Although most of the damage caused by lepidopteran insects to plants is caused by the larval stage, chemosensory systems have been investigated much more frequently for lepidopteran adults than for larvae. The fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) is a polyphagous and worldwide pest. To understand the larval chemosensory system in S. frugiperda, we sequenced and assembled the antennae and maxillae transcriptome of larvae in the sixth instar (larval a-m) using the Illumina platform. A total of 30 putative chemosensory receptor genes were identified, and these receptors included 11 odorant receptors (ORs), 4 gustatory receptors (GRs), and 15 ionotropic receptors/ionotropic glutamate receptors (IRs/iGluRs). Phylogeny tests with the candidate receptors and homologs from other insect species revealed some specific genes, including a fructose receptor, a pheromone receptor, IR co-receptors, CO2 receptors, and the OR co-receptor. Comparison of the expression of annotated genes between S. frugiperda adults and larvae (larval a-m) using RT-qPCR showed that most of the annotated OR and GR genes were predominantly expressed in the adult stage, but that 2 ORs and 1 GR were highly expressed in both the adult antennae and the larval a-m. Although most of the tested IR/iGluR genes were mainly expressed in adult antennae, transcripts of 3 iGluRs were significantly more abundant in the larval a-m than in the adult antennae of both sexes. Comparison of the expression levels of larval a-m expressed chemosensory receptors among the first, fourth, and sixth instars revealed that the expression of some of the genes varied significantly among different larval stages. These results increase our understanding of the chemosensory systems of S. frugiperda larvae and provide a basis for future functional studies aimed at the development of novel strategies to manage this pest.
Moth mouthparts, consisting of labial palps and proboscis, not only are the feeding device but also are chemosensory organs for the detection of chemical signals from surrounding environment. Up to now, the chemosensory systems in the mouthpart of moths are largely unknown. Here, we performed systematic analyses of the mouthpart transcriptome of adult Spodoptera frugiperda (Lepidoptera: Noctuidae), a notorious pest that spreads worldwide. A total of 48 chemoreceptors, including 29 odorant receptors (ORs), 9 gustatory receptors (GRs), and 10 ionotropic receptors (IRs), were annotated. Further phylogenetic analyses with these genes and homologs from other insect species determined that specific genes, including ORco, carbon dioxide receptors, pheromone receptor, IR co-receptors, and sugar receptors, were transcribed in the mouthpart of S. frugiperda adults. Subsequently, expression profiling in different chemosensory tissues demonstrated that the annotated ORs and IRs were mainly expressed in S. frugiperda antennae, but one IR was also highly expressed in the mouthparts. In comparison, SfruGRs were mainly expressed in the mouthparts, but 3 GRs were also highly expressed in the antennae or the legs. Further comparison of the mouthpart-biased chemoreceptors using RT-qPCR revealed that the expression of these genes varied significantly between labial palps and proboscises. This study provides the first large-scale description of chemoreceptors in the mouthpart of adult S. frugiperda and provides a foundation for further functional studies of chemoreceptors in the mouthpart of S. frugiperda as well as of other moth species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.