The aim of this work was to study the biodiesel production from cotton seed oil by lipase produced by Pichia guilliermondii lipase, which was immobilized onto hydrophobic magnetic particles (HMPs). The optimum reaction conditions were determined for lipase dosage, methanol-to-oil molar ratio, temperature and water content. Using response surface methodology, a quadratic polynomial equation was obtained for fatty acid methyl esters (FAMEs) content by multiple regression analysis. Verification experiments confirmed the validity of the predicted model. The optimal conditions for the enzymatic transesterification were temperature of 38.76 , 31.3% immobilized lipase, 10.4% water content, and a methanol-to-oil molar ratio of 4.715:1. The gas chromatography-mass spectrometry showed that biodiesel was mainly composed of the methyl esters of hexadecanoic, 9,12-octadecadienoic and 9-octadecadienoic acid.
Chemical depolymerization has been identified as a promising approach towards recycling of plastic waste. However, complete depolymerization may be energy intensive with complications in purification. In this work, we have demonstrated upcycling of mixed plastic waste comprising a mixture of polyester, polyamide, and polyurethane through a reprocessable vitrimer of the depolymerized oligomers. Using poly(ethylene terephthalate) (PET) as a model polymer, we first demonstrated partial controlled depolymerization, using glycerol as a cleaving agent, to obtain branched PET oligomers. Recovered PET (RPET) oligomer was then used as a feedstock to produce a crosslinked yet reprocessable vitrimer (vRPET) despite having a wide molecular weight distribution using a solventless melt processing approach. Crosslinking and dynamic interactions were observed through rheology and dynamic mechanical analysis (DMA). Tensile mechanical studies showed no noticeable decrease in mechanical strength over multiple repeated melt processing cycles. Consequently, we have clearly demonstrated the applicability of the above method to upcycle mixed plastic wastes into vitrimers and reprocessable composites. This work also afforded insights into a potentially viable alternative route for utilization of depolymerized plastic/mixed plastic waste into crosslinked vitrimer resins manifesting excellent mechanical strength, while remaining reprocessable/ recyclable for cyclical lifetime use.
The object of this study is to provide the scientific basis of biogas industry with agricultural residue straws as energy biomass. The biogas productivity potential experiment and reactor amplification experiment are carried out to study biogas yield from different agricultural straws including wheat straw, corn straw, peanut straw, soybean straw as well as rice straw, and the relationship between biogas yield and the anaerobic reactor volume with wheat straw as the substrate and with biogas slurry as a source of microorganisms under room temperature conditions (35�?. Micro-aerobic pretreatment fermentation technology is used to treat the agricultural straws. The batch anaerobic digestion technology and drainage collection process are used. The results show that the order of biogas yield from high to low is wheat, rice, corn, peanut and soybean straw. The utilization of peanut straw is the largest, followed by rice, corn, soybean and wheat straw. With wheat straw as the substrate amplification test reactor, gas production of 2.5 L and 1 L reactor is similar, and gas production rate and daily gas production of 2.5 L reactor is about 3 times than that of 15 L reactor.
To seek a simple, rapid and sensitive Coprinus cinereus Peroxidase (CIP) activity assay, a convenient one-factor-ata-time (OFAT) method and a response surface methodology (RSM) were used. The recombinant CIP expressed in Pichia pastoris was purified with the Ni-NTA spin column. Based on the results of catalytic efficiency (kcat/Km) analysis, 2,2'-azinobis (ethylbenzthiazoline-6-sulfonate) (ABTS) was selected as the optimal enzyme substrate. Results of the OFAT method showed that enzymatic reaction performed in 0.1 mol/L sodium acetate (pH 5.0) buffer in a 200-µl reaction mixture containing 0.5 mmol/L ABTS, 10 mmol/L hydrogen peroxide (H2O2), 49.7 ng CIP at 25°C gave an average CIP activity of 88 U/mL. The ABTS and H2O2 concentrations were then further optimized to improve the sensitivity of the assay. To do that, RSM was conducted through central composite design, and a reduced quadratic model with good fit regression equation was generated. ANOVA analysis of this model indicated that the concentrations of ABTS and H2O2 and their interaction had significant impact on the assay sensitivity. The optimal reaction mixture was determined to include an initial ABTS concentration of 0.82 mmol/L 49.7 ng CIP and 16.36 mmol/L H2O2, and the activity under this condition was determined to be 138.89 U/mL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.