Little is known about how the distinct architectures of dendrites and axons are established. From a genetic screen, we isolated dendritic arbor reduction (dar) mutants with reduced dendritic arbors but normal axons of Drosophila neurons. We identified dar2, dar3, and dar6 genes as the homologs of Sec23, Sar1, and Rab1 of the secretory pathway. In both Drosophila and rodent neurons, defects in Sar1 expression preferentially affected dendritic growth, revealing evolutionarily conserved difference between dendritic and axonal development in the sensitivity to limiting membrane supply from the secretory pathway. Whereas limiting ER-to-Golgi transport resulted in decreased membrane supply from soma to dendrites, membrane supply to axons remained sustained. We also show that dendritic growth is contributed by Golgi outposts, which are found predominantly in dendrites. The distinct dependence between dendritic and axonal growth on the secretory pathway helps to establish different morphology of dendrites and axons.
These data suggest that repulsive interactions operate between morphologically alike dendritic arbors in Drosophila. Further, Drosophila da sensory neurons appear to exhibit at least three different types of class-specific dendrite-dendrite interactions: persistent repulsion by all branches, repulsion only by terminal dendrites, and no repulsion.
Axons and dendrites differ in both microtubule (MT) organization and in the organelles and proteins they contain. Here we show that the MT motor dynein plays a critical role in polarized transport and in controlling the orientation of axonal MTs in fly dendritic arborisation (da) neurons. Changes in organelle distribution within the dendritic arbors of dynein mutant neurons correlate with a proximal shift in dendritic branch position. Dynein is also necessary for the dendrite-specific localization of Golgi outposts and the ion channel Pickpocket. Axonal MTs are normally oriented uniformly plus end-distal, but without dynein axons contain both plus and minus end-distal MTs. These data suggest that dynein is required for the distinguishing properties of the axon and dendrites: without dynein, dendritic organelles and proteins enter the axon and the axonal MTs are no longer uniform in polarity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.