We have developed pLink, software for data analysis of cross-linked proteins coupled with mass-spectrometry analysis. pLink reliably estimates false discovery rate in cross-link identification and is compatible with multiple homo- or hetero-bifunctional cross-linkers. We validated the program with proteins of known structures, and we further tested it on protein complexes, crude immunoprecipitates and whole-cell lysates. We show that it is a robust tool for protein-structure and protein-protein-interaction studies.
SUMOylation is a reversible post-translational modification essential for genome stability. Using high-resolution mass spectrometry, we have studied global SUMOylation in human cells and in a site-specific manner, identifying a total of over 4,300 SUMOylation sites in over 1,600 proteins. Moreover, for the first time in excess of 1,000 SUMOylation sites were identified under standard growth conditions. SUMOylation dynamics were quantitatively studied in response to SUMO protease inhibition, proteasome inhibition and heat shock. A considerable amount of SUMOylated lysines have previously been reported to be ubiquitylated, acetylated or methylated, indicating crosstalk between SUMO and other post-translational modifications. We identified 70 phosphorylation and 4 acetylation events in close proximity to SUMOylation sites, and provide evidence for acetylation-dependent SUMOylation of endogenous histone H3. SUMOylation regulates target proteins involved in all nuclear processes including transcription, DNA repair, chromatin remodeling, pre-mRNA splicing and ribosome assembly.
We carried out a test sample study to try to identify errors leading to irreproducibility, including incompleteness of peptide sampling, in LC-MS-based proteomics. We distributed a test sample consisting of an equimolar mix of 20 highly purified recombinant human proteins, to 27 laboratories for identification. Each protein contained one or more unique tryptic peptides of 1250 Da to also test for ion selection and sampling in the mass spectrometer. Of the 27 labs, initially only 7 labs reported all 20 proteins correctly, and only 1 lab reported all the tryptic peptides of 1250 Da. Nevertheless, a subsequent centralized analysis of the raw data revealed that all 20 proteins and most of the 1250 Da peptides had in fact been detected by all 27 labs. The centralized analysis allowed us to determine sources of problems encountered in the study, which include missed identifications (false negatives), environmental contamination, database matching, and curation of protein identifications. Improved search engines and databases are likely to increase the fidelity of mass spectrometry-based proteomics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.