This paper presents a novel method for extracting the land vertical displacement rates (VDRs) in Shanghai (China) using the multi-platform SAR images collected between 2009 and 2010, i.e., the ascending/descending COSMO-SkyMed (CSK) X-band images and the descending TerraSAR (TSX) X-band images. Different from the conventional approach the proposed method estimates the VDRs by multi-temporal interferometric SAR processing (i.e., temporarily coherent point InSAR, TCPInSAR) and the localized least square (LS) solution, through which the horizontal displacement rates (HDRs) can be also derived as the by-product. The three types of displacement rates in the radar line of sight (LOS) are first estimated by TCPInSAR with use of the ascending/descending CSK and descending TSX data. Both the VDRs and HDRs are then estimated by a localized LS method on the basis of the three types of LOS displacement rates derived by TCPInSAR. For comparison purposes, the VDRs for the single-platform SAR data are also obtained through dividing the LOS displacement rates by the cosine of the radar incidence angle. The analysis with the aid of GPS data shows the horizontal motion due to the geological settings in Shanghai cannot be ignored, and the VDRs derived from the single-platform data are not accurate and reliable
OPEN ACCESSRemote Sens. 2015, 7 9543 without taking into account the horizontal motion. The experimental results indicate the TCPInSAR-LS method can be used to efficiently improve the accuracy in the VDRs by integrating the multi-platform SAR data and considering both horizontal and vertical motion, thus overcoming the disadvantages in the conventional approach. The improved VDRs in Shanghai range between −22.8 and 9.6 mm/year, while the relative east-west motion rates range between −7.2 and 6.2 mm/year, and the relative north-south motion is subtle and can be ignored. Analysis of the improved VDRs shows that a slightly uplifting area of about 70 km 2 appears in the west downtown of Shanghai, and a subsiding bowl appears in the Hongkou District of Shanghai. The validation indicates that the uplifting trend can be ascribed to the measures conducted by the Shanghai municipal government, i.e., decreasing the groundwater pumping volume and increasing the groundwater recharge volume.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.