This paper presents a few comprehensive experimental studies for automated Structural Damage Detection (SDD) in extreme events using deep learning methods for processing 2D images. In the first study, a 152-layer Residual network (ResNet) is utilized to classify multiple classes in eight SDD tasks, which include identification of scene levels, damage levels, and material types. The proposed ResNet achieved high accuracy for each task while the positions of the damage are not identifiable. In the second study, the existing ResNet and a segmentation network (U-Net) are combined into a new pipeline, cascaded networks, for categorizing and locating structural damage. The results show that the accuracy of damage detection is significantly improved compared to only using a segmentation network. In the third and fourth studies, end-to-end networks are developed and tested as a new solution to directly detect cracks and spalling in the image collections of recent large earthquakes. One of the proposed networks can achieve an accuracy above 67 .6% for all tested images at various scales and resolutions, and shows its robustness for these human-free detection tasks. As a preliminary field study, we applied the proposed method to detect damage in a concrete structure that was tested to study its progressive collapse performance. The experiments indicate that these solutions for automatic detection of structural damage using deep learning methods are feasible and promising. The training datasets and codes will be made available for the public upon the publication of this paper.
Abstract. In this paper, two different convolutional neural networks (CNNs) are applied on images for automated structural damage detection (SDD) in earthquake damaged structures and cracking localization (e.g., detection of cracks, their widths and distributions) at various scales, such as pixel level, object level, and structural level. The proposed method has two main steps: 1) diagnosis, and 2) localization of cracking or other damage. At first a residual CNN with transfer learning is employed to classify the damage in the structures and structural components. This step performs damage detection using two public datasets. The second step uses another CNN with U-Net structure to locate the cracking on low resolution images. The implementations using public and self-collected datasets show promising performance for a problem that had remained a challenge in the structure engineering field for a long time and indicate that the proposed approach can perform detection and localization of structural damage with an acceptable accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.