Highlights d Six high-quality ixodid tick genomes and 678 re-sequenced tick specimens d Insights into the genetic basis of tick hematophagy and related phenotypes d Population structure and genetic diversity of six tick species d Tick-borne pathogen composition and distribution by metagenome analyses
Transcription termination defines accurate transcript 3′-ends and ensures programmed transcriptomes, making it critical to life. However, transcription termination mechanisms remain largely unknown in Archaea. Here, we reported the physiological significance of the newly identified general transcription termination factor of Archaea, the ribonuclease aCPSF1, and elucidated its 3′-end cleavage triggered termination mechanism. The depletion of Mmp-aCPSF1 in Methanococcus maripaludis caused a genome-wide transcription termination defect and disordered transcriptome. Transcript-3′end-sequencing revealed that transcriptions primarily terminate downstream of a uridine-rich motif where Mmp-aCPSF1 performed an endoribonucleolytic cleavage, and the endoribonuclease activity was determined to be essential to the in vivo transcription termination. Co-immunoprecipitation and chromatin-immunoprecipitation detected interactions of Mmp-aCPSF1 with RNA polymerase and chromosome. Phylogenetic analysis revealed that the aCPSF1 orthologs are ubiquitously distributed among the archaeal phyla, and two aCPSF1 orthologs from Lokiarchaeota and Thaumarchaeota could replace Mmp-aCPSF1 to terminate transcription of M. maripaludis. Therefore, the aCPSF1 dependent termination mechanism could be widely employed in Archaea, including Lokiarchaeota belonging to Asgard Archaea, the postulated archaeal ancestor of Eukaryotes. Strikingly, aCPSF1-dependent archaeal transcription termination reported here exposes a similar 3′-cleavage mode as the eukaryotic RNA polymerase II termination, thus would shed lights on understanding the evolutionary linking between archaeal and eukaryotic termination machineries.
The vaginal and uterine microbiota play important roles in the health of the female reproductive system. However, the interactions among the microbes in these two niches and their effects on uterine health remain unclear. Here we profile the vaginal and uterine microbial samples of 145 women, and combine with deep mining of public data and animal experiments to characterize the microbial translocation in the female reproductive tract and its role in modulating uterine health. Synchronous variation and increasing convergence of the uterine and vaginal microbiome with advancing age are shown. We also find that transplanting certain strains of vaginal bacteria into the vagina of rats induces or reduces endometritis-like symptoms, and verify the damaging or protective effects of certain vaginal bacteria on endometrium. This study clarifies the interdependent relationship of vaginal bacterial translocation with uterine microecology and endometrial health, which will undoubtedly increase our understanding of female reproductive health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.