It is necessary to construct an effective trust model to build trust relationship between peers in peer-to-peer (P2P) network and enhance the security and reliability of P2P systems. The current trust models only focus on the consumers evaluation to a transaction, which may be abused by malicious peers to exaggerate or slander the provider deliberately. In this paper, we propose a novel trust model based on mutual evaluation, called METrust, to suppress the peers malicious behavior, such as dishonest evaluation and strategic attack. METrust considers the factors including mutual evaluation, similarity risk, time window, incentive, and punishment mechanism. The trust value is composed of the direct trust value and the recommendation trust value. In order to inhibit dishonest evaluation, both participants should give evaluation information based on peers own experiences about the transaction while computing the direct trust value. In view of this, the mutual evaluation consistency factor and its time decay function are proposed. Besides, to reduce the risk of computing the recommendation trust based on the recommendations of friend peers, the similarity risk is introduced to measure the uncertainty of the similarity computing, while similarity is used to measure credibility. The experimental results show that METrust is effective, and it has advantages in the inhibition of the various malicious behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.