The extensive metabolism and administration of low doses of ethinylestradiol (EE) in preclinical animal species necessitates a sensitive analytical method to quantify the drug at low picogram-per-milliliter concentrations in biological matrixes. A highly sensitive and accurate method based on the derivatization of EE with dansyl chloride coupled with liquid chromatography/tandem mass spectrometry is described. The dansyl derivatization of EE introduced a basic secondary nitrogen into the molecule that was readily ionized in commonly used acidic HPLC mobile phases. The derivative showed an intense protonated molecular ion at m/z 530 under positive turbo ion spray ionization. The collision-induced dissociation of this ion formed a distinctive product at m/z 171, corresponding to the protonated 5-(dimethylamino)naphthalene moiety. The selected reaction monitoring, based on the m/z 530 --> 171 transition, was highly specific for EE, since no background signal was observed from blank plasma obtained from rhesus monkeys. The limit of detection, at a signal-to-noise ratio of 5, was 0.2 fg/mL EE spiked into blank plasma. This allowed for a lower limit of quantitation of 5 pg/mL using a 50-microL plasma sample and 10-microL injection of dansylated derivative into the CTC-PAL Leap autosampler coupled to a Sciex API 4000 mass spectrometer. Using fast-gradient liquid chromatography, the analyte peak eluted at 1.6 min. The validation results showed high accuracy (% bias < 4) and precision (% CV < 7.5) at broad linear dynamic ranges (0.005-20 ng/mL), using deuterated EE as internal standard. Therefore, the facile dansyl derivatization coupled with tandem mass spectral analysis allowed the development of a highly sensitive and specific method for quantitation of trace levels of EE in the plasma of rhesus monkeys dosed orally and intravenously with EE.
ABSTRACT:The metabolism and excretion of [ 14 C]sitagliptin, an orally active, potent and selective dipeptidyl peptidase 4 inhibitor, were investigated in humans after a single oral dose of 83 mg/193 Ci. Urine, feces, and plasma were collected at regular intervals for up to 7 days. The primary route of excretion of radioactivity was via the kidneys, with a mean value of 87% of the administered dose recovered in urine. Mean fecal excretion was 13% of the administered dose. Parent drug was the major radioactive component in plasma, urine, and feces, with only 16% of the dose excreted as metabolites (13% in urine and 3% in feces), indicating that sitagliptin was eliminated primarily by renal excretion. Approximately 74% of plasma AUC of total radioactivity was accounted for by parent drug. Six metabolites were detected at trace levels, each representing <1 to 7% of the radioactivity in plasma. These metabolites were the N-sulfate and N-carbamoyl glucuronic acid conjugates of parent drug, a mixture of hydroxylated derivatives, an ether glucuronide of a hydroxylated metabolite, and two metabolites formed by oxidative desaturation of the piperazine ring followed by cyclization. These metabolites were detected also in urine, at low levels. Metabolite profiles in feces were similar to those in urine and plasma, except that the glucuronides were not detected in feces. CYP3A4 was the major cytochrome P450 isozyme responsible for the limited oxidative metabolism of sitagliptin, with some minor contribution from CYP2C8.
(2017) Clinical disposition, metabolism and invitro drug-drug interaction properties of omadacycline, Xenobiotica, 47:8, 682-696, DOI: 10.1080/00498254.2016 Omadacycline was a substrate of P-glycoprotein, but not of the other transporters. 3. Omadacycline metabolic stability was confirmed in six healthy male subjects who received a single 300 mg oral dose of [ 14 C]-omadacycline (36.6 mCi). Absorption was rapid with peak radioactivity ($610 ngEq/mL) between 1-4 h in plasma or blood. The AUC last of plasma radioactivity (only quantifiable to 8 h due to low radioactivity) was 3096 ngEq h/mL and apparent terminal half-life was 11.1 h. Unchanged omadacycline reached peak plasma concentrations ($563 ng/mL) between 1-4 h. Apparent plasma half-life was 17.6 h with biphasic elimination. Plasma exposure (AUC inf ) averaged 9418 ng h/mL, with high clearance (CL/F, 32.8 L/h) and volume of distribution (Vz/F 828 L). No plasma metabolites were observed. 4. Radioactivity recovery of the administered dose in excreta was complete (>95%); renal and fecal elimination were 14.4% and 81.1%, respectively. No metabolites were observed in urine or feces, only the omadacycline C4-epimer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.