The electrochemical reduction reaction of carbon dioxide (CO2RR) to carbon monoxide (CO) is the basis for the further synthesis of more complex carbon-based fuels or attractive feedstock. Single-atom catalysts have unique electronic and geometric structures with respect to their bulk counterparts, thus exhibiting unexpected catalytic activities. A nitrogen-anchored Zn single-atom catalyst is presented for CO formation from CO2RR with high catalytic activity (onset overpotential down to 24 mV), high selectivity (Faradaic efficiency for CO (FE ) up to 95 % at -0.43 V), remarkable durability (>75 h without decay of FE ), and large turnover frequency (TOF, up to 9969 h ). Further experimental and DFT results indicate that the four-nitrogen-anchored Zn single atom (Zn-N ) is the main active site for CO2RR with low free energy barrier for the formation of *COOH as the rate-limiting step.
The development of high‐efficiency electrocatalysts for large‐scale water splitting is critical but also challenging. In this study, a hierarchical CoMoSx chalcogel was synthesized on a nickel foam (NF) through an in situ metathesis reaction and demonstrated excellent activity and stability in the electrocatalytic hydrogen evolution reaction and oxygen evolution reaction in alkaline media. The high catalytic activity could be ascribed to the abundant active sites/defects in the amorphous framework and promotion of activity through cobalt doping. Furthermore, the superhydrophilicity and superaerophobicity of micro‐/nanostructured CoMoSx/NF promoted mass transfer by facilitating access of electrolytes and ensuring fast release of gas bubbles. By employing CoMoSx/NF as bifunctional electrocatalysts, the overall water splitting device delivered a current density of 500 mA cm−2 at a low voltage of 1.89 V and maintained its activity without decay for 100 h.
Maximizing the platinum utilization in electrocatalysts toward oxygen reduction reaction (ORR) is very desirable for large‐scale sustainable application of Pt in energy systems. A cost‐effective carbon‐supported carbon‐defect‐anchored platinum single‐atom electrocatalysts (Pt1/C) with remarkable ORR performance is reported. An acidic H2/O2 single cell with Pt1/C as cathode delivers a maximum power density of 520 mW cm−2 at 80 °C, corresponding to a superhigh platinum utilization of 0.09 gPt kW−1. Further physical characterization and density functional theory computations reveal that single Pt atoms anchored stably by four carbon atoms in carbon divacancies (Pt‐C4) are the main active centers for the observed high ORR performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.