Populus alba is widely distributed and cultivated in Europe and Asia. This species has been used for diverse studies. In this study, we assembled a de novo genome sequence of P. alba var. pyramidalis (= P. bolleana) and confirmed its high transformation efficiency and short transformation time by experiments. Through a process of hybrid genome assembly, a total of 464 M of the genome was assembled. Annotation analyses predicted 37 901 protein-coding genes. This genome is highly collinear to that of P. trichocarpa, with most genes having orthologs in the two species. We found a marked expansion of gene families related to histone and the hormone auxin but loss of disease resistance genes in P. alba if compared with the closely related P. trichocarpa. The genome sequence presented here represents a valuable resource for further molecular functional analyses of this species as a new tree model, poplar breeding practices and comparative genomic analyses across different poplars.
Secondary metabolites of the flavonoid pathway participate in plant defense, and bHLH and MYB transcription factors regulate the synthesis of these metabolites. Here, we define the regulatory mechanisms in response to pathogens. Two transcription factors from Populus alba var. pyramidalis, PalbHLH1 and PalMYB90, were overexpressed together in poplar, and transcriptome analysis revealed differences in response to pathogen infection. The transgenic plants showed elevated levels of several key flavonoid pathway components: total phenols, proanthocyanidins (PAs), and anthocyanins and intermediates quercetin and kaempferol. Furthermore, PalbHLH1 and PalMYB90 overexpression in poplar enhanced antioxidase activities and H 2 O 2 release and also increased resistance to Botrytis cinerea and Dothiorella gregaria infection. Gene expression profile analysis showed most genes involved in the flavonoid biosynthesis pathway or antioxidant response to be upregulated in MYB90/bHLH1-OE poplar, but significant differential expression occurred in response to pathogen infection. Specifically, expression of PalF3H (flavanone 3-hydroxylase), PalDFR (dihydroflavonol 4-seductase), PalANS (anthocyanin synthase), and PalANR (anthocyanin reductase), which function in initial, middle, and final steps of anthocyanin and PA biosynthesis, respectively, was significantly upregulated in D. gregaria-infected MYB90/ bHLH1-OE poplar. Our results highlight that PalbHLH1 and PalMYB90 function as transcriptional activators of flavonoid pathway secondary-metabolite synthesis genes, with differential mechanisms in response to bacterial or fungal infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.