Centrifugal fans are widely used in various industries as a kind of turbo machinery. Among the components of the centrifugal fan, the impeller is a key part because it is used to transform kinetic energy into pressure energy. Crack in impeller's blades is one of the serious hidden dangers. It is important to detect the cracks in the blades as early as possible. Based on blade vibration signals, this research applies an adaptive stochastic resonance (ASR) method to diagnose crack fault in centrifugal fan. The ASR method, which can utilize the optimization ability of the grid search method and adaptively realize the optimal stochastic resonance system matching input signals, may weaken the noise and highlight weak characteristic and thus can diagnose the fault accurately. A centrifugal fan test rig is established and experiments with three cases of blades are conducted. In comparison with the ensemble empirical mode decomposition (EEMD) analysis and the traditional Fourier transform method, the experiment verified the effectiveness of the current method in blade crack detection.
It is very difficult to detect weak fault signatures due to the large amount of noise in a wind turbine system. Multiscale noise tuning stochastic resonance (MSTSR) has proved to be an effective way to extract weak signals buried in strong noise. However, the MSTSR method originally based on discrete wavelet transform (DWT) has disadvantages such as shift variance and the aliasing effects in engineering application. In this paper, the dual-tree complex wavelet transform (DTCWT) is introduced into the MSTSR method, which makes it possible to further improve the system output signal-to-noise ratio and the accuracy of fault diagnosis by the merits of DTCWT (nearly shift invariant and reduced aliasing effects). Moreover, this method utilizes the relationship between the two dual-tree wavelet basis functions, instead of matching the single wavelet basis function to the signal being analyzed, which may speed up the signal processing and be employed in on-line engineering monitoring. The proposed method is applied to the analysis of bearing outer ring and shaft coupling vibration signals carrying fault information. The results confirm that the method performs better in extracting the fault features than the original DWT-based MSTSR, the wavelet transform with post spectral analysis, and EMD-based spectral analysis methods.
Rotating machinery contains numerous rolling bearings, which are critical for ensuring the normal working position and accurate operation of individual shaft systems. However, damage to rolling bearings can change their damping, stiffness, and elastic force. As a result, fault signals appear nonlinear and nonstationary. Vibration signals thus become difficult to diagnose clearly, especially in the incipient fault stage. To solve this problem, this article proposes an intelligent approach based on variational mode decomposition and the self-organizing feature map for rolling bearing fault diagnosis. First, the intrinsic mode function components of rolling bearing vibration signals are effectively separated by variational mode decomposition. Then, permutation entropy is used to extract feature vectors, which are used as training and testing data for the self-organizing feature map network. Finally, the various fault types of states are clustered on an intuitive visualization map. Clustering results of the experimental signal and the measured signal prove that the proposed method can successfully extract and cluster the rolling bearing faults in engineering applications. The proposed method improves the fault recognition rate to some extent over traditional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.