Single noble metal atoms and ultrafine metal clusters catalysts tend to sinter into aggregated particles at elevated temperatures, driven by the decrease of metal surface free energy. Herein, we report an unexpected phenomenon that noble metal nanoparticles (Pd, Pt, Au-NPs) can be transformed to thermally stable single atoms (Pd, Pt, Au-SAs) above 900 °C in an inert atmosphere. The atomic dispersion of metal single atoms was confirmed by aberration-corrected scanning transmission electron microscopy and X-ray absorption fine structures. The dynamic process was recorded by in situ environmental transmission electron microscopy, which showed competing sintering and atomization processes during NP-to-SA conversion. Further, density functional theory calculations revealed that high-temperature NP-to-SA conversion was driven by the formation of the more thermodynamically stable Pd-N structure when mobile Pd atoms were captured on the defects of nitrogen-doped carbon. The thermally stable single atoms (Pd-SAs) exhibited even better activity and selectivity than nanoparticles (Pd-NPs) for semi-hydrogenation of acetylene.
Small molecules, namely, DCAO(3)TBDT and DR(3)TBDT, with 2-ethylhexoxy substituted BDT as the central building block and octyl cyanoacetate and 3-ethylrhodanine as different terminal units with the same linkage of dioctyltertthiophene, have been designed and synthesized. The photovoltaic properties of these two molecules as donors and fullerene derivatives as the acceptors in bulk heterojunction solar cells are studied. Among them, DR(3)TBDT shows excellent photovoltaic performance, and power conversion efficiency as high as 7.38% (certified 7.10%) under AM 1.5G irradiation (100 mW cm(-2)) has been achieved using the simple solution spin-coating fabrication process, which is the highest efficiency reported to date for any small-molecule-based solar cells. The results demonstrate that structure fine turning could cause significant performance difference and with that the performance of solution-processed small-molecule solar cells can indeed be comparable with or even surpass their polymer counterparts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.