Accurate clinical course descriptions (phenotypes) of multiple sclerosis (MS) are important for communication, prognostication, design and recruitment of clinical trials, and treatment decision-making. Standardized descriptions published in 1996 based on a survey of international MS experts provided purely clinical phenotypes based on data and consensus at that time, but imaging and biological correlates were lacking. Increased understanding of MS and its pathology, coupled with general concern that the original descriptors may not adequately reflect more recently identified clinical aspects of the disease, prompted a re-examination of MS disease phenotypes by the International Advisory Committee on Clinical Trials of MS. While imaging and biological markers that might provide objective criteria for separating clinical phenotypes are lacking, we propose refined descriptors that include consideration of disease activity (based on clinical relapse rate and imaging findings) and disease progression. Strategies for future research to better define phenotypes are also outlined.
Diffusion tensor imaging (DTI) is an exciting new MRI modality that can reveal detailed anatomy of the white matter. DTI also allows us to approximate the 3D trajectories of major white matter bundles. By combining the identified tract coordinates with various types of MR parameter maps, such as T 2 and diffusion properties, we can perform tract-specific analysis of these parameters. Unfortunately, 3D tract reconstruction is marred by noise, partial volume effects, and complicated axonal structures. Furthermore, changes in diffusion anisotropy under pathological conditions could alter the results of 3D tract reconstruction. In this study, we created a white matter parcellation atlas based on probabilistic maps of 11 major white matter tracts derived from the DTI data from 28 normal subjects. Using these probabilistic maps, automated tract-specific quantification of fractional anisotropy and mean diffusivity were performed. Excellent correlation was found between the automated and the individual tractography-based results. This tool allows efficient initial screening of the status of multiple white matter tracts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.