The high pressure structures, metallization, and superconductivity of recently synthesized H2-containing compounds (H2S)2H2 are elucidated by ab initio calculations. The ordered crystal structure with P1 symmetry is determined, supported by the good agreement between theoretical and experimental X-ray diffraction data, equation of states, and Raman spectra. The Cccm structure is favorable with partial hydrogen bond symmetrization above 37 GPa. Upon further compression, H2 molecules disappear and two intriguing metallic structures with R3m and Im-3m symmetries are reconstructive above 111 and 180 GPa, respectively. The predicted metallization pressure is 111 GPa, which is approximately one-third of the currently suggested metallization pressure of bulk molecular hydrogen. Application of the Allen-Dynes-modified McMillan equation for the Im-3m structure yields high Tc values of 191 K to 204 K at 200 GPa, which is among the highest values reported for H2-rich van der Waals compounds and MH3 type hydride thus far.
Despite the high economic and ecological importance of forests, our knowledge of the genomic evolution of trees under salt stress remains very limited. Here we report the genome sequence of the desert poplar, Populus euphratica, which exhibits high tolerance to salt stress. Its genome is very similar and collinear to that of the closely related mesophytic congener, P. trichocarpa. However, we find that several gene families likely to be involved in tolerance to salt stress contain significantly more gene copies within the P. euphratica lineage. Furthermore, genes showing evidence of positive selection are significantly enriched in functional categories related to salt stress. Some of these genes, and others within the same categories, are significantly upregulated under salt stress relative to their expression in another salt-sensitive poplar. Our results provide an important background for understanding tree adaptation to salt stress and facilitating the genetic improvement of cultivated poplars for saline soils.
Solid hydrogen sulfide is well known as a typical molecular crystal but its stability under pressure is still under debate. Particularly, Eremets et al. found the high pressure superconductivity with $T_{c}\approx$ 190 K in a H$_{2}$S sample [arXiv: 1412.0460 (2014)] which is associates with the elemental decomposition into H$_{3}$S [Sci. Rep. 4, 6968 (2014)]. Therefore, on what pressure H$_{2}$S can decompose and which kind of the products of decomposition urgent need to be solved. In this paper, we have performed an extensive structural study on different stoichiometries H$_{n}$S with ${n> 1}$ under high pressure using $ab$ $initio$ calculations. Our results show that H$_{2}$S is stable below 50 GPa and decomposes into H$_3$S and sulfur at high pressure, while H$_{3}$S is stable at least up to 300 GPa. The other hydrogen-rich H$_{4}$S, H$_{5}$S, and H$_{6}$S are unstable in the pressure range from 20 to 300 GPa
Thin, rectangular C60 nanorods in face‐centered cubic structure are synthesized by using m‐xylene as a shape controller. These unusual nanorods (see figure) can easily grow on various substrates. The smallest nanorods have widths smaller than 30 nm. The nanorods are highly crystalline in single phase. A significant expansion of the lattice constant is also found in the C60 nanorods when their widths decrease below about 80 nm.
Single-crystalline C 60 ‚1m-xylene nanorods with a hexagonal structure were successfully synthesized by evaporating a C 60 solution in m-xylene at room temperature. The ratio of the length to the diameter of the nanorods can be controlled in the range of ≈10 to over 1000 for different applications. The photoluminescence (PL) intensity of the nanorods is about 2 orders of magnitude higher than that for pristine C 60 crystals in air. Both UV and Raman results indicate that there is no charge transfer between C 60 and m-xylene. It was found that the interaction between C 60 and m-xylene molecules is of the van der Waals type. This interaction reduces the icosahedral symmetry of C 60 molecule and induces strong PL from the solvate nanorods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.