This study monitored the presence of SARS-Cov-2 RNA on environmental surfaces in hospital wards housing patients with mild, severe, and convalescent Coronavirus Disease 2019 (COVID-19), respectively. From 29 October to 4 December 2021, a total of 787 surface samples were randomly collected from a General Ward, Intensive Care Unit, and Convalescent Ward at a designated hospital for COVID-19 patients in China. All of the samples were used for SARS-Cov-2 detection. Descriptive statistics were generated and differences in the positivity rates between the wards were analyzed using Fisher’s exact tests, Yates chi-squared tests, and Pearson’s chi-squared tests. During the study period, 787 surface samples were collected, among which, 46 were positive for SARS-Cov-2 RNA (5.8%). The positivity rate of the contaminated area in the Intensive Care Unit was higher than that of the General Ward (23.5% vs. 10.4%, P<0.05). The positivity rate of the semi-contaminated area in the Intensive Care Unit (4.5%) was higher than that of the General Ward (1.5%), but this difference was not statistically significant (P>0.05). In the clean area, only one sample was positive in the Intensive Care Unit (0.5%). None of the samples were positive in the Convalescent Ward. These findings reveal that the SARS-Cov-2 RNA environmental pollution in the Intensive Care Unit was more serious than that in the General Ward, while the pollution in the Convalescent Ward was the lowest. Strict disinfection measures, personal protection, and hand hygiene are necessary to limit the spread of SARS-Cov-2.
Temperature measurement is of great significance for research in the health monitoring of large structures and earthquake precursors. Against the frequently reported low sensitivity of fiber Bragg grating (FBG) temperature sensors, a bimetallic-sensitized FBG temperature sensor was proposed. The sensitization structure of the FBG temperature sensor was designed, and the sensor sensitivity was analyzed; the lengths and materials of the substrate and strain transfer beam were analyzed theoretically; 7075 aluminum and 4J36 invar were chosen as bimetallic materials, and the ratio of the substrate length to the sensing fiber length was determined. The structural parameters were optimized; the real sensor was developed, and its performance was tested. The results suggested that the sensitivity of the FBG temperature sensor was 50.2 pm/°C, about five times than that of a bare FBG sensor, and its linearity was more than 0.99. The findings offer a reference for developing sensors of the same type and further improving the sensitivity of the FBG temperature sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.