Objective: Cerebral stroke is a unique model for studying the role of the brain in lower urinary tract (LUT) control. By its nature, stroke must change the activity of the brain to cause LUT dysfunction. The objective of this study was to describe changes in micturition-related brain activity in patients who develop LUT symptoms (LUTS) after a cerebral stroke. Materials and Methods: Healthy controls (HC, n = 10) and patients who developed storage LUTS after a cerebral stroke (n = 7) were recruited. Functional magnetic resonance imaging was used to assess brain activity in each subject. In the task-based block design, blood-oxygen-level-dependent (BOLD) signal was detected during rest, active bladder filling, and bladder voiding. BOLD signal intensity was compared between HCs and stroke subjects during bladder filling, voiding, and voiding initiation. Results: Stroke subjects exhibited higher activity in the periaqueductal gray and cerebellum during bladder filling and bladder voiding. HCs exhibited more intense activity in higher centers, such as the cingulate cortex, motor cortex, and the dorsolateral prefrontal cortex in each of the phases examined. Conclusions: Subjects with stroke-related LUTS exhibit a specific pattern of brain activity during bladder filling and voiding. There appears to be a greater reliance on primitive centers (cerebellum, midbrain) than in healthy controls during both phases of the micturition cycle. We hypothesize that these findings may reflect loss of connectivity with higher brain centers after a stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.