Bin packing is a typical optimization problem with many real-world application scenarios. In the online bin packing problem, a sequence of items is revealed one at a time, and each item must be packed into a bin immediately after its arrival. Inspired by duality in optimization, we proposed pattern-based adaptive heuristics for the online bin packing problem. The idea is to predict the distribution of items based on packed items, and to apply this information in packing future arrival items in order to handle uncertainty in online bin packing. A pattern in bin packing is a combination of items that can be packed into a single bin. Patterns selected according to past items are adopted and periodically updated in scheduling future items in the algorithm. Symmetry in patterns and the stability of patterns in the online bin packing problem are discussed. We have implemented the algorithm and compared it with the Best-Fit in a series of experiments with various distribution of items to show its effectiveness.
The movement of immigrants is simulated by using a spatial Prisoner's Dilemma (PD) with move option. We explore the effect of collective behavior in an evolutionary migrating dynamics. Simulation results show that immigrants adopting collective strategy perform better and thus gain higher survival rate than those not. This research suggests that the clustering of immigrants promotes cooperation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.