Breast cancer is a malignant tumor with high morbidity and lethality. Its pathogenesis is related to the abnormal expression of many genes. The peroxisome proliferator-activated receptors (PPARs) are a class of ligand-dependent transcription factors in the nuclear receptor superfamily. They can regulate the transcription of a large number of target genes, which are involved in life activities such as cell proliferation, differentiation, metabolism, and apoptosis, and regulate physiological processes such as glucose metabolism, lipid metabolism, inflammation, and wound healing. Further, the changes in its expression are associated with various diseases, including breast cancer. The experimental reports related to “PPAR” and “breast cancer” were retrieved from PubMed since the discovery of PPARs and summarized in this paper. This review (1) analyzed the roles and potential molecular mechanisms of non-coordinated and ligand-activated subtypes of PPARs in breast cancer progression; (2) discussed the correlations between PPARs and estrogen receptors (ERs) as the nuclear receptor superfamily; and (3) investigated the interaction between PPARs and key regulators in several signaling pathways. As a result, this paper identifies PPARs as targets for breast cancer prevention and treatment in order to provide more evidence for the synthesis of new drugs targeting PPARs or the search for new drug combination treatments.
Glucocorticoids (GCs) are a group of steroid hormones secreted by the adrenal glands in circadian cycles, and the dysregulation of GC signaling has been suggested to cause metabolic syndrome. Even though prolonged GC exposure is associated with serious side effects such as metabolic syndrome and central nervous system disorders, the use of GCs in anti-inflammatory and immunosuppressive therapies has been continuously rising. Meanwhile, the exact mechanisms by which GCs can influence the lipid metabolism as well as behavior and how they are affected by time remain unknown. In this study, the effects of two different long-term GC dosing regimens on lipid metabolism and behavior were investigated. Male Wistar rats received daily administrations of the GC dexamethasone sodium phosphate (DEX, 0.5 mg/kg body weight) at either ZT0 (Dex0) or ZT12 (Dex12). After 6 weeks of treatment, DEX-treated rats, especially those treated at ZT0, had higher hepatic lipid accumulation and serum triglyceride levels and less locomotor activity than did control rats. In addition, serum levels of corticosterone, 5-hydroxy tryptamine and norepinephrine were decreased in the Dex0 group but not in the Dex12 group compared to the control group. Furthermore, quantitative real-time polymerase chain reaction analysis indicated that the chronic administration of GCs at ZT0 upregulated genes related to glycolysis and lipid synthesis and downregulated genes related to fatty acid β-oxidation in the liver more remarkably than administration at ZT12. Both DEX-treated groups displayed severely altered expression patterns of the core clock genes Bmal1 and Per2 in the liver and in fat. In addition, the expression of glutamate aspartate transporter, glial fibrillary acidic protein and glutamate transporter-1, astrocyte-related genes important for maintaining nervous system functions, was drastically decreased in the hippocampus of DEX-treated rats, especially when DEX was given at ZT0. In conclusion, our findings confirm that the severity of side effects, indicated by altered lipid metabolism and behavioral activity, depends on the timing of GC administration and is associated with the degree of glucocorticoid receptor dysfunction after dosing at disparate time points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.