The power conversion efficiency of perovskite solar cells (PSCs) has ascended from 3.8% to 22.1% in recent years. ZnO has been well-documented as an excellent electron-transport material. However, the poor chemical compatibility between ZnO and organo-metal halide perovskite makes it highly challenging to obtain highly efficient and stable PSCs using ZnO as the electron-transport layer. It is demonstrated in this work that the surface passivation of ZnO by a thin layer of MgO and protonated ethanolamine (EA) readily makes ZnO as a very promising electron-transporting material for creating hysteresis-free, efficient, and stable PSCs. Systematic studies in this work reveal several important roles of the modification: (i) MgO inhibits the interfacial charge recombination, and thus enhances cell performance and stability; (ii) the protonated EA promotes the effective electron transport from perovskite to ZnO, further fully eliminating PSCs hysteresis; (iii) the modification makes ZnO compatible with perovskite, nicely resolving the instability of ZnO/perovskite interface. With all these findings, PSCs with the best efficiency up to 21.1% and no hysteresis are successfully fabricated. PSCs stable in air for more than 300 h are achieved when graphene is used to further encapsulate the cells.
Surface and interfacial engineering of heterogeneous metal catalysts is effective and critical for optimizing selective hydrogenation for fine chemicals. By using thiol-treated ultrathin Pd nanosheets as a model catalyst, we demonstrate the development of stable, efficient, and selective Pd catalysts for semihydrogenation of internal alkynes. In the hydrogenation of 1-phenyl-1-propyne, the thiol-treated Pd nanosheets exhibited excellent catalytic selectivity (>97%) toward the semihydrogenation product (1-phenyl-1-propene). The catalyst was highly stable and showed no obvious decay in either activity or selectivity for over ten cycles. Systematic studies demonstrated that a unique Pd-sulfide/ thiolate interface created by the thiol treatment was crucial to the semihydrogenation. The high catalytic selectivity and activity benefited from the combined steric and electronic effects that inhibited the deeper hydrogenation of C=C bonds. More importantly, this thiol treatment strategy is applicable to creating highly active and selective practical catalysts from commercial Pd/C catalysts for semihydrogenation of internal alkynes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.