Rapid developments have been made in synthetic biology within the past two decades, particularly in combination with chemistry, computer science, and other disciplines. Genetic components and internal features have been a main focus of research for synthetic biologists. Logic gates can be applied in various disciplines, but have not yet been used for plasmid design. GenoCAD is a computer-aided design software programme for synthetic biology that can be used to design complex structures. Thus, in this study, the authors analysed a large, commonly used data set containing over 70,000 feature sequences and eventually obtained comprehensive information for a complete data set without redundancy. By analysing the internal feature sequences, the authors input the most representative data in the GenoCAD platform, along with design rules and grammar for constructing high-quality practical parts. Additionally, the orderly logic gate for building biological parts designed in this study may be useful for professionals and non-professionals and may have applications in the design of a new biological computer. Finally, the authors compared the constructed plasmid with other successful examples in BLAST and PlasMapper software to demonstrate the rationality of the orderly logic gate.
Here, two two-way ion detector (TWID) and one DNA cascade logic circuit and signal amplifier model had been created. Firstly, we have constructed two bidirectional mercury and silver ion detectors, both of which can be used to detect mercury and silver ions at the same time, that means a single molecule can detect two kinds of heavy metal ions at the same time. The unique design of the switches offers significant advantages over existing methods. In addition, the two bidirectional ion detectors enable the design of the logic gates (OR, AND) using Ag+ and Hg2+ as inputs. Secondly, we constructed a two-level “AND” logic gate by combining the above two logic gates. This logic model takes the output of “OR” logic gate as the input of the next logic gate, which not only realizes the logic operation, but also achieves the function of signal amplification. We are able to recognize the logic output signals effortlessly by observing the amount of fluorescence. It’s a simple, economic and safe approach for the design of a complex multiple-input DNA logic circulation amplification model. Finally, we proved the feasibility of our model by PAGE and fluorescence alteration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.