LncRNA CAREL regulates cardiomyocyte proliferation and heart regeneration in postnatal and adult heart after injury by acting as a competing endogenous ribonucleic acid on miR-296 that targets Trp53inp1 and Itm2a.
Iron overload induces severe damage to several vital organs such as the liver, heart and bone, and thus contributes to the dysfunction of these organs. The aim of this study is to investigate whether iron overload causes the apoptosis and necrosis of bone marrow mesenchymal stem cells (BMSCs) and melatonin may prevent its toxicity. Perls’ Prussion blue staining showed that exposure to increased concentrations of ferric ammonium citrate (FAC) induced a gradual increase of intracellular iron level in BMSCs. Trypan blue staining demonstrated that FAC decreased the viability of BMSCs in a concentration-dependent manner. Notably, melatonin protected BMSCs against apoptosis and necrosis induced by FAC and it was vertified by Live/Dead, TUNEL and PI/Hoechst stainings. Furthermore, melatonin pretreatment suppressed FAC-induced reactive oxygen species accumulation. Western blot showed that exposure to FAC resulted in the decrease of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bax and Cleaved Caspase-3, and necrosis-related proteins RIP1 and RIP3, which were significantly inhibited by melatonin treatment. At last, melatonin receptor blocker luzindole failed to block the protection of BMSCs apoptosis and necrosis by melatonin. Taken together, melatonin protected BMSCs from iron overload induced apoptosis and necrosis by regulating Bcl-2, Bax, Cleaved Caspase-3, RIP1 and RIP3 pathways.
Iron homeostasis is crucial for a variety of biological processes, but the biological role of iron homeostasis in pluripotent stem cells (PSCs) remains largely unknown. The present study aimed to determine whether iron homeostasis is involved in maintaining the pluripotency of human PSCs (hPSCs). We found that the intracellular depletion of iron leads to a rapid downregulation of NANOG and a dramatic decrease in the self-renewal of hPSCs as well as spontaneous and nonspecific differentiation. Moreover, long-term depletion of iron can result in the remarkable cell death of hPSCs via apoptosis and necrosis pathways. Additionally, we found that the depletion of iron increased the activity of lipoprotein-associated phospholipase A2 (LP-PLA2) and the production of lysophosphatidylcholine, thereby suppressing NANOG expression by enhancer of zeste homolog 2-mediated trimethylation of histone H3 lysine 27. Consistently, LP-PLA2 inhibition abrogated iron depletion-induced loss of pluripotency and differentiation. Altogether, the findings of our study demonstrates that iron homeostasis, acting through glycerophospholipid metabolic pathway, is essential for the pluripotency and survival of hPSCs. STEM CELLS 2019;37:489-503
SIGNIFICANCE STATEMENTIron homeostasis is essential for various biological processes. In this study, it was first demonstrated that iron deficiency could severely impair the pluripotency and differentiation of hESCs/ hiPSCs through the downregulation of NANOG by LysoPC-mediated H3K27me3. In addition, long-term iron deficiency reduced the survival and promoted apoptosis in hESCs/hiPSCs. Findings provide novel insights into the underlying mechanisms of iron homeostasis in maintaining the pluripotency and self-renewal of hESCs/hiPSCs
Cardiomyocytes differentiated from human-induced pluripotent stem cells (hiPSCs) hold great potential for therapy of heart diseases. However, the underlying mechanisms of its cardiac differentiation have not been fully elucidated. Hippo-YAP signal pathway plays important roles in cell differentiation, tissue homeostasis, and organ size. Here, we identify the role of Hippo-YAP signal pathway in determining cardiac differentiation fate of hiPSCs. We found that cardiac differentiation of hiPSCs were significantly inhibited after treatment with verteporfin (a selective and potent YAP inhibitor). During hiPSCs differentiation from mesoderm cells (MESs) into cardiomyocytes, verteporfin treatment caused the cells retained in the earlier cardiovascular progenitor cells (CVPCs) stage. Interestingly, during hiPSCs differentiation from CVPC into cardiomyocytes, verteporfin treatment induced cells dedifferentiation into the earlier CVPC stage. Mechanistically, we found that YAP interacted with transcriptional enhanced associate domain transcription factor 3 (TEAD3) to regulate cardiac differentiation of hiPSCs during the CVPC stage.Consistently, RNAi-based silencing of TEAD3 mimicked the phenotype as the cells treated with verteporfin. Collectively, our study suggests that YAP-TEAD3 signaling is important for cardiomyocyte differentiation of hiPSCs. Our findings provide new insight into the function of Hippo-YAP signal in cardiovascular lineage commitment. K E Y W O R D S cardiac differentiation, pluripotent stem cells, TEAD3, YAP
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.