The methylation of N6 adenosine (m6A) plays a critical role in diverse biological processes. However, knowledge regarding the reconstitution of m6A across cancer types is still lacking. Here, we systematically analyzed the molecular alterations and clinical relevance of m6A regulators across > 10,000 subjects representing 33 cancer types. We found that there are widespread genetic alterations to m6A regulators, and that their expression levels are significantly correlated with the activity of cancer hallmark-related pathways. Moreover, m6A regulators were found to be potentially useful for prognostic stratification, and we identified IGF2BP3 as a potential oncogene across multiple cancer types. Our results provide a valuable resource that will guide both mechanistic and therapeutic analyses of the role of m6A regulators in cancer.
Long noncoding RNAs (lncRNAs) are emerging as critical regulators of gene expression and they play fundamental roles in immune regulation. Here we introduce an integrated algorithm, ImmLnc, for identifying lncRNA regulators of immune-related pathways. We comprehensively chart the landscape of lncRNA regulation in the immunome across 33 cancer types and show that cancers with similar tissue origin are likely to share lncRNA immune regulators. Moreover, the immune-related lncRNAs are likely to show expression perturbation in cancer and are significantly correlated with immune cell infiltration. ImmLnc can help prioritize cancer-related lncRNAs and further identify three molecular subtypes (proliferative, intermediate, and immunological) of non-small cell lung cancer. These subtypes are characterized by differences in mutation burden, immune cell infiltration, expression of immunomodulatory genes, response to chemotherapy, and prognosis. In summary, the ImmLnc pipeline and the resulting data serve as a valuable resource for understanding lncRNA function and to advance identification of immunotherapy targets.
Synergistic regulations among multiple microRNAs (miRNAs) are important to understand the mechanisms of complex post-transcriptional regulations in humans. Complex diseases are affected by several miRNAs rather than a single miRNA. So, it is a challenge to identify miRNA synergism and thereby further determine miRNA functions at a system-wide level and investigate disease miRNA features in the miRNA–miRNA synergistic network from a new view. Here, we constructed a miRNA–miRNA functional synergistic network (MFSN) via co-regulating functional modules that have three features: common targets of corresponding miRNA pairs, enriched in the same gene ontology category and close proximity in the protein interaction network. Predicted miRNA synergism is validated by significantly high co-expression of functional modules and significantly negative regulation to functional modules. We found that the MFSN exhibits a scale free, small world and modular architecture. Furthermore, the topological features of disease miRNAs in the MFSN are distinct from non-disease miRNAs. They have more synergism, indicating their higher complexity of functions and are the global central cores of the MFSN. In addition, miRNAs associated with the same disease are close to each other. The structure of the MFSN and the features of disease miRNAs are validated to be robust using different miRNA target data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.