Proteomic and metabolomics revealed the underlying mechanism of extended-spectrum β-lactamase production in Escherichia coli.
Background:This prospective, randomized, and controlled study was performed to determine the benefits of prewarmed infusion in elderly patients who underwent bilateral hip replacement.Methods:Between September 2015 and April 2016, elderly patients who underwent bilateral hips replacement that met the inclusion and exclusion criteria were included in this study. After inclusion, patients were randomized into one of the study groups: in the control group, patients received an infusion of fluid kept at room temperature (22–23°C); in the warming infusion group, patients received an infusion of fluid warmed using an infusion fluid heating apparatus (35°C). Postoperative outcomes, including recovery time, length of hospital stay, visual analogue scale (VAS) score, and postoperative complications rate of patients from both groups, were compared.Results:A total of 64 patients were included in our study (71.2 ± 7.6 years, 53.1% males), with 32 patients in the control group and 32 patients in warming infusion group. No significant difference was found in terms of demographic data and intraoperative blood transfusion rate between 2 groups (P > 0.05). Patients receiving a prewarmed infusion had a significantly shorter time to spontaneous breath, eye opening, consciousness recovery, and extubation than the control group (P < 0.05). In addition, significant differences were found in Steward score and VAS score between 2 groups (P < 0.05). Moreover, warming infusion group also showed an obviously decreased incidence of shivering and postoperative cognitive dysfunction (P < 0.05).Conclusion:A prewarmed infusion could reduce the incidence of perioperative hypothermia and improve outcomes in the elderly during bilateral hip replacement.
Background Adrenocortical adenomas (ACAs) can lead to the autonomous secretion of aldosterone responsible for primary aldosteronism (PA), which is the most common form of secondary arterial hypertension. However, the authentic fundamental mechanisms underlying ACAs remain unclear. Objective Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics and bioinformatics analyses from etiological studies of ACAs were performed to screen the differentially expressed proteins (DEPs) and investigate the relevant mechanisms of their occurrence and development. Results could help determine therapeutic targets of clinical significance. Methods In the present study, iTRAQ-based proteomics was applied to analyze ACA tissue samples from normal adrenal cortex tissues adjacent to the tumor. Using proteins extracted from a panel of four pairs of ACA samples, we identified some upregulated proteins and other downregulated proteins in all four pairs of ACA samples compared with adjacent normal tissue. Subsequently, we predicted protein–protein interaction networks of three DEPs to determine the authentic functional factors in ACA. Results A total of 753 DEPs were identified, including 347 upregulated and 406 downregulated proteins. The expression of three upregulated proteins (E2F3, KRT6A, and ALDH1A2) was validated by Western blot in 24 ACA samples. Our data suggested that some DEPs might be important hallmarks during the development of ACA. Conclusions This study is the first proteomic research to investigate alterations in protein levels and affected pathways in ACA using the iTRAQ technique. Thus, this study not only provides a comprehensive dataset on overall protein changes but also sheds light on its potential molecular mechanism in human ACAs. Electronic supplementary material The online version of this article (10.1186/s12864-019-6030-5) contains supplementary material, which is available to authorized users.
Given that the incidence of cancer is dramatically increasing nowadays, cancer-related neuropathic pain including tumor-related and therapy-related pain gradually attracts more attention from researchers, which basically behaves as a metabolic-neuro-immune disorder with worse clinical outcomes and prognosis. Among various mechanisms of neuropathic pain, the common underlying one is the activation of inflammatory responses around the injured or affected nerve(s). Innate and adaptive immune reactions following nerve injury together contribute to the regulation of pain. On the other hand, the tumor immune microenvironment involving immune cells, as exemplified by lymphocytes, macrophages, neutrophils and dendritic cells, inflammatory mediators as well as tumor metastasis have added additional characteristics for studying the initiation and maintenance of cancer-related neuropathic pain. Of interest, these immune cells in tumor microenvironment exert potent functions in promoting neuropathic pain through different signaling pathways. To this end, this review mainly focuses on the contribution of different types of immune cells to cancer-related neuropathic pain, aims to provide a comprehensive summary of how these immune cells derived from the certain tumor microenvironment participate in the pathogenesis of neuropathic pain. Furthermore, the clarification of roles of various immune cells in different tumor immune microenvironments associated with certain cancers under neuropathic pain states constitutes innovative biology that takes the pain field in a different direction, and thereby provides more opportunities for novel approaches for the prevention and treatment of cancer-related neuropathic pain.
Background Escherichia coli -associated antimicrobial resistance (AMR) issue so far needs urgent considerations. This study aims to screen the potent genes associated with extended-spectrum β-lactamases (ESBLs) in drug-resistant Escherichia coli and elucidate the specific drug-resistant mechanism. Methods Clinical ESBLs-EC samples were obtained based on the microbial identification, and the whole genome was sequenced. In combination with the significantly enriched pathways, several differently expressed genes were screened and verified by RT-PCR. Furthermore, through knocking out glyoxalase 1 (GLO1) gene and transfecting overexpressed plasmids, the potential relationship between GLO1 and ESBLs was then investigated. Lastly, the concentrations of β-lactamases in bacteria and supernatant from different groups were examined by enzyme-linked immunosorbent assay (ELISA). Results After successful isolation and identification of ESBLs-EC, the whole genome and eighteen differential metabolic pathways were analyzed to select differently expressed genes, including add, deoD, guaD, speG, GLO1, VNN1, etc. RT-PCR results showed that there were no differences in these genes between the standard bacteria and susceptible Escherichia coli . Remarkably, the relative levels of four genes including speG, Hdac10, GLO1 and Ppcdc were significantly increased in ESBLs-EC in comparison with susceptible strains, whereas other gene expression was decreased. Further experiments utilizing gene knockout and overexpression strains confirmed the role of GLO1. At last, a total of 10 subtypes of β-lactamases were studied using ELISA, including BES-, CTX-M1-, CTX-M2-, OXA1-, OXA2-, OXA10-, PER-, SHV-, TEM-, and VEB-ESBLs, and results demonstrated that GLO1 gene expression only affected PER-β-lactamases but had no effects on other β-lactamases. Conclusion SpeG, Hdac10, GLO1 and Ppcdc might be associated with the drug-resistant mechanism of Escherichia coli . Of note, this study firstly addressed the role of GLO1 in the drug resistance of ESBLs-EC, and this effect may be mediated by increasing PER-β-lactamases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.