Coal and gangue underground pneumatic separation is of key importance for green mining. Two kinds of arrangement schemes for high-pressure value used in pneumatic separation system are proposed in this study. Pneumatic separation effects are examined under different arrangement of high-pressure value. Here, theoretical pneumatic separation distance formulas of mineral particles affected by different airflow directions are derived and validated by a series of numerical simulations and orthogonal experiments. In the following analysis, the effects of gangue diameter (d), conveyor velocity (v0), and the height difference between conveyor belt and air nozzle (hp) are mainly considered. The numerical simulation and experimental results indicate that pneumatic separation effects under the condition ofuandv0being in the opposite direction will be better than that ofuandv0being in the same direction. The pneumatic separation distanceΔSshows a decreasing trend with the increasing of the three factors. The study also shows that gangue diameter has the most significant influence on separation distance, followed by conveyor velocityv0and height differencehp.
Purpose
Aiming at improving the mechanical efficiency, the applicability and the working life of high water-based hydraulic motor (HWBHM) under working conditions at low speed and high pressure, the friction performance of different matching materials for piston slipper – crankshaft pair with high water-based hydraulic fluid (HWBHF) under working conditions at low speed and high pressure – were studied.
Design/methodology/approach
The friction experiments for different materials (316L, 316L with surface coating OVINO – tetrahedral amorphous carbon [TAC; 316L-TAC] – 316L with surface coating OVINO-graphite intercalated compound [GIC; 316L-GIC] and polyetheretherketone [PEEK] reinforced with 30 per cent carbon fiber [PEEK-30CF]) under HWBHF lubrication were implemented on a pin-disk friction abrasion machine to determine the variations of coefficient of friction (CoF) and wear rate for each matching materials. In addition, the roughness and the morphology of worn surface of different matching materials were quantitatively characterized.
Findings
The study revealed that material combinations have different friction performances. Test results showed that the abrasion of matching type stainless steel (SS) and SS is rather serious, and the method of surface coating could improve the friction performance of SS when friction with other materials. For matching type of SS with surface treatment (SS-ST) and SS-ST, 316L-GIC and 316L-GIC have relatively stable CoF, and the wear rate was smaller than other matching materials, while 316L-TAC and 316L-TAC has the smaller CoF than that of 316L-GIC. Matching materials 316L-GIC with PEEK-30CF of matching type SS-ST and PEEK-30CF has more stable COF and better wear resistance than those of other matching materials.
Originality/value
This research has laid a foundation for the improvement of service life and working efficiency of friction pair in HWBHM under working conditions at low speed and high pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.