Objectives Parkinson disease (PD) is associated with cognitive impairments. However, the underlying neural mechanism of cognitive impairments in PD is still not clear. This study aimed to investigate the anatomic alternations of gray matter in PD patients with mild cognitive impairment (MCI) and their associations with neurocognitive measurements. Methods T1-weighted magnetic resonance imaging (MRI) data were acquired from 23 PD patients with MCI, 23 PD patients without MCI, and 23 matched healthy controls. The MRI data were analyzed using voxel-based morphometry (VBM) and surfaced-based morphometry (SBM) methods to assess the structural changes in gray matter volume and cortical thickness respectively. Receiver operating characteristic (ROC) analysis was used to examine the diagnostic accuracies of the indexes of interest. The correlations between the structural metrics and neurocognitive assessments (e.g., Montreal cognitive assessment, MOCA; Mini-mental state examination, MMSE) were further examined. Results PD patients with MCI showed reduced gray matter volume (GMV) in the frontal cortex (e.g., right inferior frontal gyrus and middle frontal gyrus) and extended to insula as well as cerebellum compared with the healthy controls and PD patients without MIC. Thinner of cortical thickens in the temporal lobe (e.g., left middle temporal gyrus and right superior temporal gyrus) extending to parietal cortex (e.g., precuneus) were found in the PD patients with MCI relative to the healthy controls and PD patients without MCI.ROC analysis indicated that the area under the ROC curve (AUC) values in the frontal, temporal, and subcortical structures (e.g., insula and cerebellum) could differentiate the PD patients with MCI and without MCI and healthy controls. Furthermore, GMV of the right middle frontal gyrus and cortical thickness of the right superior temporal gyrus were correlated with neurocognitive dysfunctions (e.g., MOCA and MMSE) in PD patients with MCI. Conclusion This study provided further evidence that PD with MCI was associated with structural alternations of brain. Morphometric analysis focusing on the cortical and subcortical regions could be biomarkers of cognitive impairments in PD patients.
Background. Multiple organ failure (MOF) may lead to an increased mortality rate of moderately severe (MSAP) or severe acute pancreatitis (SAP). This study is aimed to use machine learning to predict the risk of MOF in the course of disease. Methods. Clinical and laboratory features with significant differences between patients with and without MOF were screened out by univariate analysis. Prediction models were developed for selected features through six machine learning methods. The models were internally validated with a five-fold cross-validation, and a series of optimal feature subsets were generated in corresponding models. A test set was used to evaluate the predictive performance of the six models. Results. 305 (68%) of 455 patients with MSAP or SAP developed MOF. Eighteen features with significant differences between the group with MOF and without it in the training and validation set were used for modeling. Interleukin-6 levels, creatinine levels, and the kinetic time were the three most important features in the optimal feature subsets selected by K-fold cross-validation. The adaptive boosting algorithm (AdaBoost) showed the best predictive performance with the highest AUC value (0.826; 95% confidence interval: 0.740 to 0.888). The sensitivity of AdaBoost (80.49%) and specificity of logistic regression analysis (93.33%) were the best scores among the six models in the test set. Conclusions. A predictive model of MOF complicated by MSAP or SAP was successfully developed based on machine learning. The predictive performance was evaluated by a test set, for which AdaBoost showed a satisfactory predictive performance. The study is registered with the China Clinical Trial Registry (Identifier: ChiCTR1800016079).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.