Matrine, one of the main components extracted from Sophora flavescens Ait, has a wide range of pharmacological effects including anti-tumor activities on a number of cancer cell lines. This study has investigated whether matrine could also display anti-tumor action on rat C6 glioma cells. Exposure of C6 cells to matrine resulted in inhibition of proliferation and induction of apoptosis in a dose-dependent manner, as measured by the MTT assay and Flow cytometry. The Annexin V/PI staining further detected the apoptotic cells at both early and late phases of apoptosis. We used AO/EB staining to examine the programmed cell death of matrine-treated C6 cells, and showed that the death rate detected by AO/EB staining was higher than the apoptosis rate measured by Annexin V/PI staining, suggesting that autophagy, the Type II programmed cell death, may be involved in matrine-induced cell death, which was further confirmed by electronic microscopy. To explore the molecular mechanism, an apoptosis real-time PCR array was performed, which has demonstrated that 57 genes were at least 2-fold upregulated, and 11 genes were at least 2-fold downregulated in matrine-treated C6 cells, compared with untreated cells. However, the gene expression profiles could only partly and roughly explain molecular mechanisms of apoptosis and autophagy in matrine-treated C6 cells, thus further investigations are required to confirm the specific molecular pathways and related molecules responsible for the programmed cell death.
Piwi-interacting RNAs (piRNAs/piRs) are small non-coding RNAs that can serve important roles in genome stability by silencing transposable genetic elements. piR651, one of these novel piRNAs, regulates a number of biological functions, as well as carcinogenesis. Previous studies have reported that piR651 is overexpressed in human gastric cancer tissues and in several cancer cell lines, including non-small cell lung cancer (NSCLC) cell lines. However, the role of piRNAs in carcinogenesis has not been clearly defined. In the present study, a small interfering RNA inhibitor of piR651 was transfected into the NSCLC A549 and HCC827 cell lines to evaluate the effect of piR651 on cell growth. The association between piR651 expression and apoptosis was evaluated by flow cytometry and western blot analysis. Wound-healing and Transwell migration and invasion assays were used to determine the effect of piR651 on the migration and invasion of NSCLC cell lines. The results revealed that inhibition of piR651 inhibited cell proliferation and significantly increased the apoptotic rate compared with the negative control (NC), as well as altering the expression of apoptosis-associated proteins. There were fewer migrating and invading cells in the piR651-inhibited group than in the NC group in the Transwell assays. Furthermore, in the wound-healing assay, the wound remained wider in the piR651 inhibitor group, suggesting decreased cell migration compared with that in the NC group. The results of the present study demonstrate that piR651 potentially regulates NSCLC tumorigenic behavior by inhibiting cell proliferation, migration and invasion and by inducing apoptosis. Therefore, piR651 is a potential cancer diagnosis marker.
The present study has investigated the anti-tumor activity and the underlying mechanisms of matrine on human colon cancer LoVo cells. Matrine inhibited the proliferation of the cells in dose- and time-dependent manners. The concentration required for 50 % inhibition (IC50) was 1.15, 0.738, and 0.414 mg/ml, when cell were incubated with matrine for 24, 48, and 72 h, respectively. Matrine induced cell cycle arrest at G1 phase by downregulating cyclin D1 and upregulating p27 and p21. Matrine induced cell apoptosis by reducing the ratio of Bcl-2/Bax and increasing the activation of caspase-9 in a dose-dependent manner. Matrine displayed its anti-tumor activity by inactivating Akt, the upstream factor of the above proteins. Matrine significantly reduced the protein levels of pAkt, and increased the protein levels of other downstream factors, pBad and pGSK-3β. Specific inhibition of pAkt induced cell apoptosis, and synergized with matrine to inhibit the proliferation of LoVo cells; whereas activation of Akt neutralized the inhibitory effect of matrine on cell proliferation. The present study has demonstrated that matrine inhibits proliferation and induces apoptosis of human colon cancer LoVo cells by inactivating Akt pathway, indicating matrine may be a potential anti-cancer agent for colon cancer.
Matrine has been reported to be an effective anti-tumor therapy; however, the anti-metastatic effects of matrine on hepatocellular carcinoma (HCC) and the molecular mechanism(s) involved remain unclear. Therefore, the aims of the present study were to evaluate the effects of matrine on hepatoma and to determine the associated mechanism(s) involved. In the present study, matrine was confirmed to prevent the proliferation of HCC cells and it was observed that matrine also inhibited the migratory, and invasive capabilities of HCC at non-toxic concentrations. Additionally, matrine increased epithelial-cadherin expression and decreased the expression levels of vimentin, matrix metalloproteinase (MMP)2, MMP9, zinc finger protein SNAI1 and zinc finger protein SNAI2. These results indicate that the anti-metastatic effect of matrine may be associated with epithelial-mesenchymal transition (EMT). Furthermore, matrine can increase phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN (PTEN) expression and reduce phosphorylated-protein kinase B (Akt) levels. In conclusion, these results suggested that matrine is a potential therapeutic agent that can suppress cancer-associated invasion and migration via PTEN/Akt-dependent inhibition of EMT.
P‑element‑induced wimpy testis (PIWI)‑interacting RNAs (piRNAs) are epigenetic‑related short ncRNAs that participate in chromatin regulation, transposon silencing, and modification of specific gene sites. These epigenetic factors or alterations are also involved in the growth of a variety of human cancers, including lung, breast, and colon cancer. Accumulating evidence has revealed that tumor metastasis and invasion involve genetic and epigenetic factors. Cancer metastasis is characterized by epigenetic alterations including DNA methylation and histone modification. Changes in DNA methylation, H3K9me3 heterochromatin and transposable elements have been detected in several cancers. piRNAs may function in gene silencing and gene modification upstream or downstream of oncogenes in cancer cell lines or cancer tissues. In addition to piRNAs, PIWI proteins can be used as biomarkers for prognosis, diagnosis and clinical evaluation and may be factors in cancer metastasis. Here, we elucidated the possible mechanisms by which piRNAs regulate cancer metastasis, including but not restricted to influencing DNA and histone methylation and transposable elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.