Lipids are highly diverse biomolecules associated with several biological functions including structural constituent, energy storage, and signal transduction. It is essential to characterize lipid structural isomers and further understand their biological roles. Unsaturated lipids contain one or multiple carbon–carbon double bonds. Identifying double bond position presents a major challenge in unsaturated lipid characterization. Recently, several advancements have been made for double bond localization by mass spectrometry (MS) analysis. However, many of these studies require complex chemical reactions or advanced mass spectrometers with special fragmentation techniques, which limits the application in lipidomics study. Here, an innovative meta-chloroperoxybenzoic acid (m-CPBA) epoxidation reaction coupling with collision-induced dissociation (CID)-MS/MS strategy provides a new tool for unsaturated lipidomics analysis. The rapid epoxidation reaction was carried out by m-CPBA with high specificity. Complete derivatization was achieved in minutes without overoxidized byproduct. Moreover, diagnostic ion pair with 16 Da mass difference indicated localization of carbon–carbon double bond in MS/MS spectra. Multiple lipid classes were evaluated with this strategy and generated abundant fragments for structural analysis. Unsaturated lipid analysis of yeast extract using this strategy took less than 30 min, demonstrating the potential for high-throughput lipidomics analysis by this approach. This study opens a door for high throughput unsaturated lipid analysis with minimal requirement for instrumentation, which could be widely applied in lipidomics analysis.
The MALDI-LTQ-Orbitrap XL mass spectrometer is a high performance instrument capable of high resolution and accurate mass (HRAM) measurements. The maximum m/z of 4000 precludes the MALDI analysis of proteins without generating multiply charged ions. Herein, we present the study of HRAM laserspray ionization mass spectrometry (MS) with MS/MS and MS imaging capabilities using 2-nitrophloroglucinol (2-NPG) as matrix on a MALDI-LTQ-Orbitrap XL mass spectrometer. The optimized conditions for multiply charged ion production have been determined and applied to tissue profiling and imaging. Biomolecules as large as 15 kDa have been detected with up to five positive charges at 100K mass resolution (at m/z 400). More importantly, MS/MS and protein identification on multiply charged precursor ions from both standards and tissue samples have been achieved for the first time with an intermediate-pressure source. The initial results reported in this study highlight potential utilities of laserspray ionization MS analysis for simultaneous in situ protein identification, visualization and characterization from complex tissue samples on a commercially available HRAM MALDI MS system.
Matrix-assisted ionization vacuum (MAIV) is a novel ionization technique that generates multiply charged ions in vacuum without the use of laser ablation or high voltage. MAIV can be achieved in intermediate-vacuum and high-vacuum matrix-assisted laser desorption/ionization (MALDI) sources and electrospray ionization (ESI) sources without instrument modification. Herein, we adapt MAIV onto the MALDI-LTQ-Orbitrap XL platform for biomolecule analysis. As an attractive alternative to MALDI for in solution and in situ analysis of biomolecules, MAIV coupling to high resolution and accurate mass (HRAM) MS instrument has successfully expanded the mass detection range and improved the fragmentation efficiency due to the generation of multiply charged ions. Additionally, the softness of MAIV enables potential application in labile post-translational modification (PTM) analysis. In this study, proteins as large as 18.7 kDa were detected with up to 18 charges; intact peptides with labile PTM were well preserved during the ionization process and characterized MS/MS; peptides and proteins in complex tissue samples were detected and identified both in liquid extracts and in situ. Moreover, we demonstrated that this method facilitates MS/MS analysis with improved fragmentation efficiency compared to MALDI-MS/MS.
Mass spectrometric imaging (MSI) is a powerful tool that grants the ability to investigate a broad mass range of molecules, from small molecules to large proteins, by creating detailed distribution maps of selected compounds. To date, MSI has demonstrated its versatility in the study of neurotransmitters and neuropeptides of different classes toward investigation of neurobiological functions and diseases. These studies have provided significant insight in neurobiology over the years and current technical advances are facilitating further improvements in this field. neurotransmitters, focusing specifically on the challenges and recent Herein, we advances of MSI of neurotransmitters.
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometric imaging (MSI) is a powerful tool to map the spatial distribution of biomolecules on tissue sections. Recent developments of hybrid MS instruments allow combination of different types of data acquisition by various mass analyzers into a single MSI analysis, which reduces experimental time and sample consumptions. Here, using the well-characterized crustacean nervous system as a test-bed, we explore the utility of high resolution and accurate mass (HRAM) MALDI Orbitrap platform for enhanced in situ characterization of the neuropeptidome with improved chemical information. Specifically, we report on a multiplex-MSI method, which combines HRAM MSI with data dependent acquisition (DDA) tandem MS analysis in a single experiment. This method enables simultaneous mapping of neuropeptide distribution, sequence validation and novel neuropeptide discovery in crustacean neuronal tissues. To enhance the dynamic range and efficiency of in situ DDA, we introduced a novel approach of fractionating full m/z range into several sub-mass ranges and embedding the setup using the multiplex-DDA-MSI scan events to generate pseudo fractionation before MS/MS scans. The division of entire m/z into multiple segments of m/z subranges for MS interrogation greatly decreased the complexity of molecular species from tissue samples and the heterogeneity of the distribution and variation of intensities of m/z peaks. By carefully optimizing the experimental conditions such as the dynamic exclusion, the multiplex-DDA-MSI approach demonstrates better performance with broader precursor coverage, less biased MS/MS scans towards high abundance molecules and improved quality of tandem mass spectra for low intensity molecular species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.