With the development of deep learning techniques and large scale datasets, the question answering (QA) systems have been quickly improved, providing more accurate and satisfying answers. However, current QA systems either focus on the sentence-level answer, i.e., answer selection, or phrase-level answer, i.e., machine reading comprehension. How to produce compositional answers has not been throughout investigated. In compositional question answering, the systems should assemble several supporting evidence from the document to generate the final answer, which is more difficult than sentence-level or phrase-level QA. In this paper, we present a largescale compositional question answering dataset containing more than 120k human-labeled questions. The answer in this dataset is composed of discontiguous sentences in the corresponding document. To tackle the ComQA problem, we proposed a hierarchical graph neural networks, which represent the document from the low-level word to the high-level sentence. We also devise a question selection and node selection task for pre-training. Our proposed model achieves a significant improvement over previous machine reading comprehension methods and pre-training methods. Codes, dataset can be found at https://github.com/benywon/ComQA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.