With the rise of cycling as a mode choice for commuting and short-distance delivery, as well as policy objectives encouraging this trend, bike count models are increasingly critical to transportation planning and investment. Studies have found that network connectivity plays a role in such models, but there remains a lack of measure for the connectivity of a link in a multimodal trip context. This study proposes a connectivity measure that captures the importance of a link in connecting the origins of cyclists and nearby subway stations, and incorporates it in a negative binomial regression model to forecast bike counts at links. Representative bike trips are generated with regard to bike-friendliness using the New York City transit trip planner and used to determine the deviation from the shortest path via the designated link. The measure is shown to improve model fitness with a significance level within 10%. Insights are also drawn for income levels, bike lanes, subway station availability, and average commute time of travelers.
Despite the dependency of electric vehicle (EV) fleets on charging station availability, charging infrastructure remains limited in many cities. Three contributions are made. First, we propose an EV-to-charging station user equilibrium (UE) assignment model with a M/D/C queue approximation as a nondifferentiable nonlinear program. Second, to address the nondifferentiability of the queue delay function, we propose an original solution algorithm based on the derivative-free Method of Successive Averages. Computational tests with a toy network show that the model converges to a UE. A working code in Python is provided free on Github with detailed test cases. Third, the model is applied to the large-scale case study of NYC DCAS fleet and EV charging station configuration as of July 8, 2020, which includes unique, real data for 563 Level 2 chargers and 4 DCFCs owned by NYC and 1484 EVs owned by NYC fleets distributed over 512 TAZs. The arrival rates of the assignment model are calibrated in the base scenario to fit an observed average utilization ratio of 7.6% in NYC. The model is then applied to compare charging station investment policies of DCFCs to Level 2 charging stations based on two alternative criteria. Results suggest a policy based on selecting locations with high utilization ratio instead of with high queue delay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.