Tau protein plays a crucial role in the pathogenesis of Alzheimer's disease (AD). However, the assay to detect low concentrations of tau protein is a great challenge for the early diagnosis of AD. We will outline a novel aptamer-antibody sandwich assay based on an electrochemical biosensor for the detection of tau-381 in human serum. To improve the detection sensitivity, the aptamer-antibody sandwich assay for the detection of tau-381 was developed by using a tau antibody (anti-tau) and an aptamer specific to tau-381 as the recognition element and cysteamine-stabilized gold nanoparticles (AuNPs) for signal amplification. Differential pulse voltammetry (DPV) was employed to record the signal response of tau-381 with different concentrations. The tau-381 concentration ranged from 0.5 pM to 100 pM. The responses of DPV measurements showed excellent results in this dynamic range. This simple, rapid, highly sensitive and specific assay gave a low limit of detection (LOD) of 0.42 pM for tau-381. The feasibility and reliability of the assay were verified by testing tau-381 in human serum from patients with AD. Thus, this method could prove valuable in diagnosing AD within the early stages of the disease.
The electrochemical aptamer sensor has been designed for detecting tau381, a critical biomarker of Alzheimer′s disease in human serum. The aptasensor is obtained by immobilizing the aptamer on a carboxyl graphene/thionin/gold nanoparticle modified glassy-carbon electrode. As a probe and bridge molecule, thionin connected carboxyl graphene and gold nanoparticles, and gave the electrical signal. Under optimal conditions, the increment of differential pulse voltammetry signal increased linearly with the logarithm of tau381 concentration in the range from 1.0 pM to 100 pM, and limit of detection was 0.70 pM. The aptasensor reliability was evaluated by determining its selectivity, reproducibility, stability, detection limit, and recovery. Performance analysis of the tau381 aptasensor in 10 patients’ serum samples showed that the aptasensor could screen patients with and without Alzheimer′s disease. The proposed aptasensor has potential for use in clinically diagnosing Alzheimer′s disease in the early stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.