Grazing is very common in the grassland ecosystem, and it has a significant impact on the C stocks and cycle. One of the most important drivers of soil C stocks is functional diversity. However, limited studies have attempted to explore the effects of functional diversity on soil C stocks associated with grazing disturbance. This study was carried out in Hulunbeier grassland, Inner Mongolia, and four grazing intensities (no grazing (NG), light grazing (LG), moderate grazing (MG), and heavy grazing (HG)) were identified. The plant functional traits and important soil properties under different grazing intensities were measured. Functional identity and diversity were calculated based on the measured functional traits. The impacts of functional identity and diversity on soil organic carbon stocks (SOCstocks) were analyzed using a multi-model inference (MMI) approach. Our study showed that the functional diversity effect on soil C stocks varies depending on grazing intensity. We identified that functional richness has a significant impact on SOCstocks in NG. The community weighted mean of leaf area became the best predictor of SOCstocks in LG. As grazing intensified, functional divergence best explained SOCstocks in moderate and heavy grazing sites, and their relationship was positive. The major outcomes of this research could shed light on the mechanics of soil carbon storage.
The accurate estimation of a regional ecosystem’s carbon storage and the exploration of its spatial distribution and influencing factors are of great significance for ecosystem carbon sink function enhancements and management. Using the Yellow River Basin as the study area, we assessed the changes in regional terrestrial ecosystem carbon storage through geographically weighted regression modeling based on a large number of measured sample sites, explored the main influencing factors through geographic probe analysis, and predicted the carbon sequestration potentials under different scenarios from 2030 to 2050. The results showed that (1) the total carbon storage in the Yellow River Basin in 2020 was about 8.84 × 109 t. Above-ground biological carbon storage, below-ground biological carbon storage, and soil carbon storage accounted for 6.39%, 5.07%, and 89.70% of the total ecosystem carbon storage, respectively. From 2000 to 2020, the carbon storage in the basin showed a trend in decreasing and then increasing, and the carbon storage in the west was larger than in the east and larger in the south than in the north. (2) Forest ecosystem was the main contributor to the increase in carbon storage in the Yellow River Basin. Elevation, temperature, and precipitation were the main factors influencing the spatial pattern of carbon storage. (3) The ecological conservation scenario had the best carbon gain effect among the four future development scenarios, and appropriate ecological conservation policies could be formulated based on this scenario in the future to help achieve the goals of carbon sequestration and sink increase.
Impervious surfaces (IS) are one of the most important components of the earth’s surface, and understanding how IS have expanded is vital. However, few studies on IS or urbanization have focused on the cradle of the Chinese nation—the Yellow River Basin (YRB). In this study, the Random Forest and Temporal Consistency Check methods were employed to generate long-term maps of IS in the YRB based on Landsat imagery. To explore the dynamics and differences in IS, we developed a spatiotemporal analysis and put forward regional comparisons between different research units of the YRB. We documented the remote sensing-based ecological index (RSEI) in multiple circular zones to discuss the ecological effects of the expansion of IS. The IS extraction strategy achieved excellent performance, with an average overall accuracy of 90.93% and kappa coefficient of 0.79. The statistical results demonstrated that the spatial extent of IS areas in the YRB increased to 18,287.36 km2 in 2020 which was seven times more than that in 1986, at rates of 166 km2/a during 1986–2001, 365 km2/a during 2001–2010, and 1044 km2/a during 2011–2020. Our results indicated that the expansion and densification of IS was slow in core urban areas with high initial IS fraction (ISF), significant in the suburban or rural areas with low initial ISF, and obvious but not significant in the exurb rural or depopulated areas with an initial ISF close to 0. The multiyear RSEI indicated that environmental quality of the YRB had improved with fluctuations. The ecological effects of the impervious expansion slightly differed in urban core areas versus outside these areas. When controlling the urban boundary, more attention should be paid to the rational distribution of ecologically important land. These results provide comprehensive information about IS expansion and can provide references for delineating urban growth boundaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.