We report the strategy of using the cationic surfactant cetyltrimethylammonium bromide (CTAB) and amino acid L-histidine (His) as co-templates to produce hierarchical ZIF-8 in an aqueous system at room temperature. The hierarchical ZIF-8 had both meso- and microporous structure, resulting in a high mesopore volume as well as specific surface area which can be controlled by the synthesis conditions. We put forward the hypothesis for the formation of a mesoporous structure and the enhancement of the porosity of ZIF-8 that the histidine plays a key role on the stabilization of CTAB micelles and avoiding the production of unexpected by-products therefore promotes the fabrication of pure phase ZIF-8 containing the mesopores interconnected with micropores. The prepared hierarchical ZIF-8 exhibited an excellent performance as a new kind of porous absorbent for efficient removal of the toxic arsenate.
The development of highly efficient adsorbents, especially those aimed at the capture of trace (ppb, 10 −9 ) arsenate, is one of the principal challenges in the water treatment field. In this article, zeolitic imidazolate framework-8 (ZIF-8) was explored for the removal of trace arsenate from water. Results showed that ZIF-8 outperformed some other adsorbents and owned the first and highest reported adsorption capacity (76.5 mg g −1 ) at a low equilibrium concentration (9.8 μg L −1 ). Satisfactory adsorption properties (adsorption capacity, adsorption rate, adaptability to water environment, regeneration capacity) demonstrated the feasibility of using ZIF-8 as an efficient adsorbent for the removal of aquatic trace arsenate. In addition, Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) spectra revealed the proposed mechanism of As(V) adsorption onto ZIF-8: producing large amounts of external active sites (Zn−OH) through the dissociative adsorption of water and subsequently forming an inner-sphere complex with the arsenate molecule. Insights into the adsorption process uncovered the key factors to the formation of this high removal efficiency: the hydration process to form a surface hydrogen group by dissociative adsorption of water; the high accessible surface area; and the cooperative interaction (e.g., van der Waals' force and hydrogen bonding) between As(V) species at low surface coverage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.