Wall climbing robots using negative pressure suction always employ air pumps which have great noise and large volume. Two prototypes of bio-inspired miniature suction cup actuated by shape memory alloy (SMA) are designed based on studying characteristics of biologic suction apparatuses, and the suction cups in this paper can be used as adhesion mechanisms for miniature wall climbing robots without air pumps. The first prototype with a two-way shape memory effect (TWSME) extension TiNi spring imitates the piston structure of the stalked sucker; the second one actuated by a one way SMA actuator with a bias has a basic structure of stiff margin, guiding element, leader and elastic element. Analytical model of the second prototype is founded considering the constitutive model of the SMA actuator, the deflection of the thin elastic plate under compound load and the thermo-dynamic model of the sealed air cavity. Experiments are done to test their suction characteristics, and the analytical model of the second prototype is simulated on Matlab/simulink platform and validated by experiments.
PurposeWall climbing robots' volume is needed to be very small in fields that workspace is limited, such as anti‐terror scouting, industry pipe network inspecting and so on. The purpose of this paper is to design a miniature wall climbing robot with biomechanical suction cups actuated by shape memory alloy (SMA) actuators.Design/methodology/approachBased on characteristics of biologic suction apparatuses, the biomechanical suction cup is designed first. Theory analysis of the suction cup is made considering elastic plate's deflection and SMAs constitutive model. A triangular close linkage locomotion mechanism is chosen for the miniature robot because of its simple structure and control. The robot's gait, kinematics, and control system are all illustrated in this paper.FindingsExperiments indicate that the suction cup can be used as an adhesion mechanism for miniature wall climbing robots, and the miniature robot prototype with biomechanical suction cups can move in straight line and turn with a fixed angle on an inclined glass wall.Originality/valueThis paper describes how a miniature wall climbing robot with biomechanical suction cups actuated by SMA without any air pump is designed.
Exoskeletons can assist the daily life activities of the elderly with weakened muscle strength, but traditional rigid exoskeletons bring parasitic torque to the human joints and easily disturbs the natural movement of the wearer’s upper limbs. Flexible exoskeletons have more natural human-machine interaction, lower weight and cost, and have great application potential. Applying assist force according to the patient’s needs can give full play to the wearer’s remaining muscle strength, which is more conducive to muscle strength training and motor function recovery. In this paper, a design scheme of an elbow exoskeleton driven by flexible antagonistic cable actuators is proposed. The cable actuator is driven by a nonlinear series elastic mechanism, in which the elastic elements simulate the passive elastic properties of human skeletal muscle. Based on an improved elbow musculoskeletal model, the assist torque of exoskeleton is predicted. An assist-as-needed (AAN) control algorithm is proposed for the exoskeleton and experiments are carried out. The experimental results on the experimental platform show that the root mean square error between the predicted assist torque and the actual assist torque is 0.00226 Nm. The wearing experimental results also show that the AAN control method designed in this paper can reduce the activation of biceps brachii effectively when the exoskeleton assist level increases.
Wearable exoskeletons are developing rapidly due to their superiority in improving human ability and efficiency. The construction of a multifunctional exoskeleton system relies on an efficient continuous energy supply and various high-performance sensors. Here, a magnetic-driven piezoelectric cantilever generator (MPCG) array is designed for energy harvesting and angle sensing of joint motions. Combining theoretical derivation and experimental characterization, it is found that the nonlinear magnetic force acting on the cantilever structure will cause the phenomenon of frequency upconversion, which greatly improves the output of the MPCG. The experiment successfully proves the feasibility of using the MPCG array as an energy-harvesting module to collect energy from human joint motions and power an RH/temp sensor. Furthermore, the MPCG array can also be used to sense the rotation angle and angular velocity. By integrating with a wireless data acquisition and transmission module and supporting software, a wearable joint rehabilitation monitoring and assessment system is built, which can measure the activities of the joint in real time and evaluate the flexion degree. The demonstrated wearable exoskeleton system for joint motion energy harvesting and joint angle sensing is of great value for the construction of a multifunctional exoskeleton system and wearable smart rehabilitation equipment.
The traditional suction mechanism with an air pump in robotics is difficult to miniaturize. Integrating a piezoelectric pump into a suction cup is an effective method to achieve miniaturization. In this paper, a novel suction cup with a piezoelectric micropump is designed. The micropump is valveless and the suction cup is designed with a laminated structure in order to facilitate miniaturizing and manufacturing. A systematic optimization design method of the suction cup is introduced which addresses the static and dynamic driving characteristics of the piezoelectric actuator and the rectifying efficiency of diffuser/nozzle's optimization. The design is verified via simulation using an improved equivalent electric network model. Static lumped parameters in this model are calculated by the finite element method instead of the traditional analytic method, and the diffuser/nozzle's flow resistance is computed by integrating and introducing rectifying efficiency coefficient. Simulation results indicate that the suction cup can generate a stable negative pressure, and the equivalent electric network model can improve the simulation efficiency and accuracy. The maximum steady-state negative pressure of the suction cup can also be effectively improved after optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.