BackgroundThe present study was aimed to evaluate whether IgG, IgM and IgA antibodies levels detected against a novel Mycobacterium tuberculosis polyprotein 38 F-64 F (with 38 F being the abbreviation for 38kD-ESAT6-CFP10 and 64 F for Mtb8.4-MPT64-TB16.3-Mtb8) are suitable for diagnosing active tuberculosis, and for monitoring the efficacy of chemotherapy on TB patients.MethodsIn this study, a total of 371 active TB patients without treatment were selected and categorized into S+/C+ group (n = 143), S-/C+ group (n = 106) or S-/C- group (n = 122). A series of serum samples were collected from 82 active TB patients who had undergone anti-TB chemotherapy for 0–6 months at one month interval. Humoral responses (IgG, IgM and IgA) were determined for the novel Mycobacterium tuberculosis polyprotein using indirect ELISA methods in all of serum samples.ResultsFor S+/C+, S-/C+ and S-/C- active tuberculosis patients before anti-TB chemotherapy, the sensitivities of tests based on IgG were 65.7%, 46.2% and 52.5% respectively; the sensitivities based on IgM were 21.7%, 24.5% and 18.9%; and the sensitivities based on IgA were 25.2%, 17.9% and 23.8%. By combination of three isotypes, for all active tuberculosis patients, the test sensitivity increased to 70.4% with the specificity being 91.5%. After anti-TB chemotherapy, there were no significant differences between groups with different courses of anti-TB chemotherapy.ConclusionsThe novel Mycobacterium tuberculosis polyprotein 38 F-64 F represents potential antigen suitable for measuring IgG, IgM and IgA antibodies. However, the serodiagnostic test based on the 38 F-64 F polyprotein appears unsuitable for monitoring the efficacy of chemotherapy.
Background
The niche of tissue development in vivo involves the growth matrix, biophysical cues and cell-cell interactions. Although natural extracellular matrixes may provide good supporting for seeding cells in vitro, it is evitable to destroy biophysical cues during decellularization. Reconstructing the bioactivities of extracellular matrix-based scaffolds is essential for their usage in tissue repair.
Results
In the study, a hybrid hydrogel was developed by incorporating single-wall carbon nanotubes (SWCNTs) into heart-derived extracellular matrixes. Interestingly, insoluble SWCNTs were well dispersed in hybrid hydrogel solution via the interaction with extracellular matrix proteins. Importantly, an augmented integrin-dependent niche was reconstructed in the hybrid hydrogel, which could work like biophysical cues to activate integrin-related pathway of seeding cells. As supporting scaffolds in vitro, the hybrid hydrogels were observed to significantly promote seeding cell adhesion, differentiation, as well as structural and functional development towards mature cardiac tissues. As injectable carrier scaffolds in vivo, the hybrid hydrogels were then used to delivery stem cells for myocardial repair in rats. Similarly, significantly enhanced cardiac differentiation and maturation(12.5 ± 2.3% VS 32.8 ± 5%) of stem cells were detected in vivo, resulting in improved myocardial regeneration and repair.
Conclusions
The study represented a simple and powerful approach for exploring bioactive scaffold to promote stem cell-based tissue repair.
Graphic abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.