The transcription factor BCL6 is a known driver of oncogenesis in lymphoid malignancies, including diffuse large B cell lymphoma (DLBCL). Disruption of its interaction with transcriptional repressors interferes with the oncogenic effects of BCL6. We used a structure-based drug design to develop highly potent compounds that block this interaction. A subset of these inhibitors also causes rapid ubiquitylation and degradation of BCL6 in cells. These compounds display significantly stronger induction of expression of BCL6-repressed genes and anti-proliferative effects than compounds that merely inhibit co-repressor interactions. This work establishes the BTB domain as a highly druggable structure, paving the way for the use of other members of this protein family as drug targets. The magnitude of effects elicited by this class of BCL6-degrading compounds exceeds that of our equipotent non-degrading inhibitors, suggesting opportunities for the development of BCL6-based lymphoma therapeutics.
Nicotinamide phosphoribosyltransferase (Nampt) is a promising anticancer target. Virtual screening identified a thiourea analogue, compound 5, as a novel highly potent Nampt inhibitor. Guided by the cocrystal structure of 5, SAR exploration revealed that the corresponding urea compound 7 exhibited similar potency with an improved solubility profile. These studies also indicated that a 3-pyridyl group was the preferred substituent at one inhibitor terminus and also identified a urea moiety as the optimal linker to the remainder of the inhibitor structure. Further SAR optimization of the other inhibitor terminus ultimately yielded compound 50 as a urea-containing Nampt inhibitor which exhibited excellent biochemical and cellular potency (enzyme IC50 = 0.007 μM; A2780 IC50 = 0.032 μM). Compound 50 also showed excellent in vivo antitumor efficacy when dosed orally in an A2780 ovarian tumor xenograft model (TGI of 97% was observed on day 17).
Crystal structures of several urea- and thiourea-derived compounds in complex with the nicotinamide phosphoribosyltransferase (Nampt) protein were utilized to design a potent amide-containing inhibitor bearing an aza-indole moiety (7, Nampt BC IC50 = 9.0 nM, A2780 cell proliferation IC50 = 10 nM). The Nampt-7 cocrystal structure was subsequently obtained and enabled the design of additional amide-containing inhibitors which incorporated various other fused 6,5-heterocyclic moieties and biaryl sulfone or sulfonamide motifs. Additional modifications of these molecules afforded many potent biaryl sulfone-containing Nampt inhibitors which also exhibited favorable in vitro ADME properties (microsomal and hepatocyte stability, MDCK permeability, plasma protein binding). An optimized compound (58) was a potent inhibitor of multiple cancer cell lines (IC50 <10 nM vs U251, HT1080, PC3, MiaPaCa2, and HCT116 lines), displayed acceptable mouse PK properties (F = 41%, CL = 52.4 mL/min/kg), and exhibited robust efficacy in a U251 mouse xenograft model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.