There is a high demand for potent, selective, and brain-penetrant small molecule inhibitors of leucine-rich repeat kinase 2 (LRRK2) to test whether inhibition of LRRK2 kinase activity is a potentially viable treatment option for Parkinson's disease patients. Herein we disclose the use of property and structure-based drug design for the optimization of highly ligand efficient aminopyrimidine lead compounds. High throughput in vivo rodent cassette pharmacokinetic studies enabled rapid validation of in vitro-in vivo correlations. Guided by this data, optimal design parameters were established. Effective incorporation of these guidelines into our molecular design process resulted in the discovery of small molecule inhibitors such as GNE-7915 (18) and 19, which possess an ideal balance of LRRK2 cellular potency, broad kinase selectivity, metabolic stability, and brain penetration across multiple species. Advancement of GNE-7915 into rodent and higher species toxicity studies enabled risk assessment for early development.
Mutations in the genetic sequence of leucine-rich repeat kinase 2 (LRRK2) have been linked to increased LRRK2 activity and risk for the development of Parkinson's disease (PD). Potent and selective small molecules capable of inhibiting the kinase activity of LRRK2 will be important tools for establishing a link between the kinase activity of LRRK2 and PD. In the absence of LRRK2 kinase domain crystal structures, a LRRK2 homology model was developed that provided robust guidance in the hit-to-lead optimization of small molecule LRRK2 inhibitors. Through a combination of molecular modeling, sequence analysis, and matched molecular pair (MMP) activity cliff analysis, a potent and selective lead inhibitor was discovered. The selectivity of this compound could be understood using the LRRK2 homology model, and application of this learning to a series of 2,4-diaminopyrimidine inhibitors in a scaffold hopping exercise led to the identification of highly potent and selective LRRK2 inhibitors that were also brain penetrable.
Nicotinamide phosphoribosyltransferase (Nampt) is a promising anticancer target. Virtual screening identified a thiourea analogue, compound 5, as a novel highly potent Nampt inhibitor. Guided by the cocrystal structure of 5, SAR exploration revealed that the corresponding urea compound 7 exhibited similar potency with an improved solubility profile. These studies also indicated that a 3-pyridyl group was the preferred substituent at one inhibitor terminus and also identified a urea moiety as the optimal linker to the remainder of the inhibitor structure. Further SAR optimization of the other inhibitor terminus ultimately yielded compound 50 as a urea-containing Nampt inhibitor which exhibited excellent biochemical and cellular potency (enzyme IC50 = 0.007 μM; A2780 IC50 = 0.032 μM). Compound 50 also showed excellent in vivo antitumor efficacy when dosed orally in an A2780 ovarian tumor xenograft model (TGI of 97% was observed on day 17).
Simple chiral amines catalyze a highly chemo‐ and enantioselective aziridination of α,β‐unsaturated aldehydes to provide 2‐formylaziridines in good yields and with up to 99 % ee. The synthetic utility of this organocatalytic method was exemplified in a two‐step asymmetric synthesis of β‐amino acid esters with readily removable protecting groups (see scheme; R1=tert‐butoxycarbonyl, benzyloxycarbonyl).
Antibody-drug conjugates (ADCs) have become an important therapeutic modality for oncology, with three approved by the FDA and over 60 others in clinical trials. Despite the progress, improvements in ADC therapeutic index are desired. Peptide-based ADC linkers that are cleaved by lysosomal proteases have shown sufficient stability in serum and effective payload-release in targeted cells. If the linker can be preferentially hydrolyzed by tumor-specific proteases, safety margin may improve. However, the use of peptide-based linkers limits our ability to modulate protease specificity. Here we report the structure-guided discovery of novel, nonpeptidic ADC linkers. We show that a cyclobutane-1,1-dicarboxamide-containing linker is hydrolyzed predominantly by cathepsin B while the valine-citrulline dipeptide linker is not. ADCs bearing the nonpeptidic linker are as efficacious and stable in vivo as those with the dipeptide linker. Our results strongly support the application of the peptidomimetic linker and present new opportunities for improving the selectivity of ADCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.