Paralleling the diversity of genetic and protein activities, pathologic human tissues also exhibit diverse radiographic features. Here we show that dynamic imaging traits in non-invasive computed tomography (CT) systematically correlate with the global gene expression programs of primary human liver cancer. Combinations of twenty-eight imaging traits can reconstruct 78% of the global gene expression profiles, revealing cell proliferation, liver synthetic function, and patient prognosis. Thus, genomic activity of human liver cancers can be decoded by noninvasive imaging, thereby enabling noninvasive, serial and frequent molecular profiling for personalized medicine.
Inhibition of the kinase activity of leucine-rich repeat kinase 2 (LRRK2) is under investigation as a possible treatment for Parkinson's disease. However, there is no clinical validation as yet, and the safety implications of targeting LRRK2 kinase activity are not well understood. We evaluated the potential safety risks by comparing human and mouse LRRK2 mRNA tissue expression, by analyzing a Lrrk2 knockout mouse model, and by testing selective brain-penetrating LRRK2 kinase inhibitors in multiple species. LRRK2 mRNA tissue expression was comparable between species. Phenotypic analysis of Lrrk2 knockout mice revealed morphologic changes in lungs and kidneys, similar to those reported previously. However, in preclinical toxicity assessments in rodents, no pulmonary or renal changes were induced by two distinct LRRK2 kinase inhibitors. Both of these kinase inhibitors induced abnormal cytoplasmic accumulation of secretory lysosome-related organelles known as lamellar bodies in type II pneumocytes of the lung in nonhuman primates, but no lysosomal abnormality was observed in the kidney. The pulmonary change resembled the phenotype of Lrrk2 knockout mice, suggesting that this was LRRK2-mediated rather than a nonspecific or off-target effect. A biomarker of lysosomal dysregulation, di-docosahexaenoyl (22:6) bis(monoacylglycerol) phosphate (di-22:6-BMP), was also decreased in the urine of Lrrk2 knockout mice and nonhuman primates treated with LRRK2 kinase inhibitors. Our results suggest a role for LRRK2 in regulating lysosome-related lamellar bodies and that pulmonary toxicity may be a critical safety liability for LRRK2 kinase inhibitors in patients.
There is a broad spectrum of sonographic findings in papillary carcinoma of the thyroid. Half of the lesions in this series had at least 1 uncommon sonographic feature.
There is a high demand for potent, selective, and brain-penetrant small molecule inhibitors of leucine-rich repeat kinase 2 (LRRK2) to test whether inhibition of LRRK2 kinase activity is a potentially viable treatment option for Parkinson's disease patients. Herein we disclose the use of property and structure-based drug design for the optimization of highly ligand efficient aminopyrimidine lead compounds. High throughput in vivo rodent cassette pharmacokinetic studies enabled rapid validation of in vitro-in vivo correlations. Guided by this data, optimal design parameters were established. Effective incorporation of these guidelines into our molecular design process resulted in the discovery of small molecule inhibitors such as GNE-7915 (18) and 19, which possess an ideal balance of LRRK2 cellular potency, broad kinase selectivity, metabolic stability, and brain penetration across multiple species. Advancement of GNE-7915 into rodent and higher species toxicity studies enabled risk assessment for early development.
The HIV RT and Protease Sequence Database is an on-line relational database that catalogues evolutionary and drug-related human immunodeficiency virus reverse transcriptase (RT) and protease sequence variation (http://hivdb.stanford.edu). The database contains a compilation of nearly all published HIV RT and protease sequences including International Collaboration database submissions (e.g., GenBank) and sequences published in journal articles. Sequences are linked to data about the source of the sequence sample and the anti-HIV drug treatment history of the individual from whom the isolate was obtained. The database is curated and sequences are annotated with data from 180 literature references. Users can retrieve additional data and view alignments of sequences sets meeting specific criteria (e.g., treatment history, subtype, presence of a particular mutation).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.