Despite the increasing research interest in end-to-end learning systems for speech emotion recognition, conventional systems either suffer from the overfitting due in part to the limited training data, or do not explicitly consider the different contributions of automatically learnt representations for a specific task. In this contribution, we propose a novel end-to-end framework which is enhanced by learning other auxiliary tasks and an attention mechanism. That is, we jointly train an end-to-end network with several different but related emotion prediction tasks, i. e., arousal, valence, and dominance predictions, to extract more robust representations shared among various tasks than traditional systems with the hope that it is able to relieve the overfitting problem. Meanwhile, an attention layer is implemented on top of the layers for each task, with the aim to capture the contribution distribution of different segment parts for each individual task. To evaluate the effectiveness of the proposed system, we conducted a set of experiments on the widely used database IEMOCAP. The empirical results show that the proposed systems significantly outperform corresponding baseline systems.
Microwave assisted with alkaline (MW-A) condition was applied in the pretreatment of swine manure, and the effect of the pretreatment on anaerobic treatment and biogas production was evaluated in this study. The two main microwaving (MW) parameters, microwaving power and reaction time, were optimized for the pretreatment. Response surface methodology (RSM) was used to investigate the effect of alkaline microwaving process for manure pretreatment at various values of pH and energy input. Results showed that the manure disintegration degree was maximized of 63.91% at energy input of 54 J/g and pH of 12.0, and variance analysis indicated that pH value played a more important role in the pretreatment than in energy input. Anaerobic digestion results demonstrated that MW-A pretreatment not only significantly increased cumulative biogas production, but also shortened the duration for a stable biogas production rate. Therefore, the alkaline microwaving pretreatment could become an alternative process for effective treatment of swine manure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.