CaAl2O4:Eu is a persistent luminescence (PL) material in the blue light region with potentially wide commercial applications. With the doping of Nd, the decay time can be elongated to more than 19 h. These excellent properties are believed to be in close relation with the electronic structures of the dopants, the defects, and the host material. In this work, we attempt to achieve a better understanding of the PL mechanism of CaAl2O4:Eu based on first-principles calculations. The electronic structures of the host CaAl2O4, the luminescent center Eu, the O and Ca vacancies, and the dopant Nd are systematically studied. According to the calculations, the 4f and 5d levels of Eu are located within the band gap and slightly above the conduction band minimum (CBM), respectively. The electrons on the 4f levels can be excited into the 5d levels via ultraviolet radiation. The excited electrons on the 5d levels can move to the conduction bands and become free electron carriers. The electron carriers can be trapped for a short period by the empty defect levels below the CBM if they are very close to the defects and then return back into the conduction band. After the trap–release process, the electrons may re-enter the 5d levels of Eu and then move back to the 4f levels accompanied by light emission. The +2 charged-state O vacancies can serve as electron traps. The Ca vacancies cannot contribute to the PL property directly but can assist in stabilizing the +2 charged-state O vacancies. Nd dopants can serve as both electron donors and electron traps. These new insights into the electronic structures are useful for determining which materials may possess good PL properties, thereby motivating more experimental efforts in synthesizing improved PL materials.
properties, low cost, facile preparation and high defect tolerance. [1] Remarkable progress has been made, especially in terms of widespread applications spanning from solar cells, photodetectors, photocatalysts, and solid-state lasers to light-emitting diodes (LEDs). [2] In more recent years, owing to the exceptional luminescence properties, such as high brightness, color tunability, and intense absorption coefficient, lead halide perovskites have found promising potential applications as color converter for next-generation solid-state lightings and backlight displays. [3] Unfortunately, the intrinsic nature of poor stability and toxicity of lead halide perovskites are some serious issues to be tackled if the materials are to be used on a large scale. The chemical instability will severely restrict the lifespan of devices, and the accumulation of lead will cause serious environmental problems and fatal threat to human health. [4] Extensive efforts have been devoted to overcome the thorny challenges on the way to practical applications. To completely eliminate the potential danger of lead leakage, the simplest and practicable way is to replace it in the B site of ABX 3 with nontoxic isovalent metal ions. [5] As reasonable candidates, Ge 2+ and Sn 2+ ions are the first to come to mind for the substitution of Pb 2+ due to the same electronic configuration of ns 2 np 0 Lead halide perovskites have emerged as superstar semiconductors owing to their superior optoelectronic properties. However, the issues of chemical and thermodynamic instability and toxicity are yet to be resolved. Here, the non-and Bi 3+-doped all-inorganic lead-free perovskite derivatives are reported. Most remarkable is the successful extending of excitation of Cs 2 ZrCl 6 to match with the commercial near ultraviolet light-emitting diode chips via deliberate Bi 3+ aliovalent doping. The blue emission, contrary to self-trapped exciton (STE) emissions amply reported previously, originates from Bi 3+ ionoluminescence with a high photoluminescence quantum efficiency of 50%. The competition for harvesting electrons between STEs and Bi 3+ is studied in detail by steady-and transient-state fluorescence spectroscopy in combination with theoretical calculations. Surface grafting endows Cs 2 ZrCl 6 :Bi 3+ with a robust water-resistant core-shell-like structure and abiding emission. Surprisingly, the emission intensity even increases to 115.94% of the initial level after immersing in water for 2 h. The as-obtained phosphor enables the fabrication of a white light-emitting diode (w-LED), achieving CCT = 4179 K and Ra = 81.9. This work not only promotes the step toward development of leadfree, stable, and high-efficiency perovskite derivatives for the next-generation warm w-LEDs, but also reveals the structure-PL relationship.
Photocatalytic purification of polluted water is a very promising way to alleviate the increasingly serious water resources crisis. Despite tremendous efforts, developing visible-light-driven photocatalysts with high activity at low cost still remains a great challenge. Herein, we report for the first time the design and synthesis of ordered m-BiVO(4) quantum tubes-graphene nanocomposites that exhibit unprecedented visible-light-driven photocatalytic activities, over 20 times faster than that of commercial P25 or bulk BiVO(4) and roughly 1.5 times more active than that of bare m-BiVO(4) quantum tubes. Notably, the unusual photoreactivities arise from the synergistic effects between the microscopic crystal structure of m-BiVO(4) and macroscopic morphological features of ordered m-BiVO(4) quantum tubes and two-dimensional graphene sheets. These structural features help to provide increased photocatalytic reaction sites, extended photoresponding range, enhanced charge transportation and separation efficiency simultaneously. Briefly, this work not only provides a simple and straightforward strategy for fabricating highly efficient and stable graphene-based nanocomposites, but also proves that these unique structures are excellent platforms for significantly improving their visible-light-driven photoactivities, holding great promise for their applications in the field of purifying polluted water resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.