The application of three-dimensional common electronics that can be directly pasted on arbitrary surfaces in the fields of human health monitoring, intelligent robots and wearable electronic devices has aroused people’s interest, especially in achieving stable adhesion of electronic devices on biological dynamic three-dimensional interfaces and high-quality signal acquisition. In recent years, liquid metal (LM) materials have been widely used in the manufacture of flexible sensors and wearable electronic devices because of their excellent tensile properties and electrical conductivity at room temperature. In addition, LM has good biocompatibility and can be used in a variety of biomedical applications. Here, the recent development of LM flexible electronic printing methods for the fabrication of three-dimensional conformal electronic devices on the surface of human tissue is discussed. These printing methods attach LM to the deformable substrate in the form of bulk or micro-nano particles, so that electronic devices can adapt to the deformation of human tissue and other three-dimensional surfaces, and maintain stable electrical properties. Representative examples of applications such as self-healing devices, degradable devices, flexible hybrid electronic devices, variable stiffness devices and multi-layer large area circuits are reviewed. The current challenges and prospects for further development are also discussed.
Flexible conductive fibers have shown tremendous potential in diverse fields, including health monitoring, intelligent robotics, and human–machine interaction. Nevertheless, most conventional flexible conductive materials face challenges in meeting the high conductivity and stretchability requirements. In this study, we introduce a knitted structure of liquid metal conductive fibers. The knitted structure of liquid metal fiber significantly reduces the resistance variation under tension and exhibits favorable durability, as evidenced by the results of cyclic tensile testing, which indicate that their resistance only undergoes a slight increase (<3%) after 1300 cycles. Furthermore, we demonstrate the integration of these liquid metal fibers with various rigid electronic components, thereby facilitating the production of pliable LED arrays and intelligent garments for electrocardiogram (ECG) monitoring. The LED array underwent a 30 min machine wash, during which it consistently retained its normal functionality. These findings evince the devices’ robust stable circuit functionality and water resistance that remain unaffected by daily human activities. The liquid metal knitted fibers offer great promise for advancing the field of flexible conductive fibers. Their exceptional electrical and mechanical properties, combined with compatibility with existing electronic components, open new possibilities for applications in the physiological signal detection of carriers, human–machine interaction, and large-area electronic skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.