Formulated the multi-microgrid (MMG) operation as a transaction commitment problem. • Designed a two-stage robust optimization based MMG coordinated operation approach. • Described discrete feature of energy interactive behaviour among multiple microgrids. • Mitigated the disturbances of uncertainties in renewable energy. • Reduced frequent energy exchange between the MMG and the grid.
Background
The development of Systemic lupus erythematosus (SLE) has been associated with the balance of Th17 and Treg cells. IL-2 and rapamycin can influence the populations of both Th17 and Treg cells. However, it is unclear whether low dose of IL-2 and rapamycin can relieve the symptoms of SLE patients and what is the mechanisms. In this study, we aim to analyze the effect of low dose of IL-2 plus rapamycin on the number of Tregs, Th17 cells and the ratio of Th17/Treg cells, as well as to evaluate its therapeutic efficacy in refractory SLE patients.
Result
Fifty refractory SLE patients and 70 healthy controls were enrolled and followed up for 24 weeks. We found that compared with HC, the refractory SLE patients had a lower number of Tregs, a similar number of Th17 cells, but an increased ratio of Th17/Treg. After the treatment, the number of Tregs of the patients at 12th and 24th week was significantly increased. While the number of Th17 cells was unchanged, the ratio of Th17/Treg was significantly decreased at both 6 weeks and 24 weeks. After 6, 12 and 24 weeks of treatment, the SLEDAI score was significantly reduced. The prednison dosage at 6th,12th and 24th week post treatment was significantly decreased.
Conclusion
Our results support that the reduction of Tregs and the imbalance of Th17/Treg cells were correlated with the occurrence and development of refractory SLE. Low dose of IL-2 combined with rapamycin was able to restore the number of Tregs and the balance of Th17/Treg cells. As a result, this approach was able to induce immune tolerance and promote disease remission, allowing for the reduction in prednisone dosage.
Trial registration
ChiCTR-IPR-16009451
Registration date: 2016/10/16
Aims: To investigate the impacts of combinatorial atorvastatin (Ator) perioperative administration and mesenchymal stem cell (MSC) implantation on therapeutic effects in the rat experimental acute kidney injury. Methods: The model of renal ischemia-reperfusion (I/R) injury was induced by the release of bilateral renal pedicle clamps following 45 min of occlusion. Immediately after reperfusion, CM-Dil-labeled MSCs (1 × 106 cells) or vehicles only were administered through the carotid artery of the animals pretreated with or without Ator. Results: The combined treatment with Ator and MSCs (Ator+MSCs) markedly reduced the elevated levels of serum creatinine and blood urea nitrogen, as well as the severity of renal damage 24 h after I/R injury. In addition, we also observed inhibition of renal tubular cell apoptosis and promotion of proliferation in the Ator+MSCs group compared with the other groups. Consistent with the improvement in renal function and morphology, Ator pretreatment significantly ameliorated oxidative stress, inhibited inflammation response, and increased the viability of implanted MSCs. With regard to the further mechanism, we found that the expression of Toll-like receptor 4 (TLR4) and high-mobility group box 1, potential mediators of innate immunity, was significantly decreased in the Ator-treated groups. Conclusion: Ator treatment may protect the kidney undergoing I/R injury through suppression of TLR4 signaling, creating a better environment for the survival of grafted MSCs. The extra benefit of the Ator+MSCs combined therapy may result from the Ator-mediated inhibition of oxidative stress and inflammation in the ischemic kidney.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.