In Cournot model, when there are many competitions, the competitive equilibrium becomes chaotic. It is extremely difficult to derive the general equilibrium points. There is no previous research to explore a further problem with the general equilibrium points of n-contenders in Cournot model. In this paper, a general equilibrium Cournot game is proposed based on an inverse demand function. A market spatial structure model is built. Intermediate value theorem, as a realistic method, is introduced to handle a general competitive equilibrium in Cournot model. The number and stability in general equilibrium points are detected by means of celestial motion theory and spatial agglomeration competition model. The existence of general equilibrium points and the stability of Cournot equilibrium points, which are new and future complement of previously known results. Numerical simulations are given to support the research results.
In general, quantity competition and price competition exist simultaneously in a dynamic economy system. Whether it is quantity competition or price competition, when there are more than three companies in one market, the equilibrium points will become chaotic and are very difficult to be derived. This paper considers generally dynamic equilibrium points of combination of the Bertrand model and Cournot model. We analyze general equilibrium points of the Bertrand model and Cournot model, respectively. A general equilibrium point of the combination of the Cournot model and Bertrand model is further investigated in two cases. The theory of spatial agglomeration and intermediate value theorem are introduced. In addition, the stability of equilibrium points is further illustrated on celestial bodies motion. The results show that at least a general equilibrium point exists in combination of Cournot and Bertrand. Numerical simulations are given to support the research results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.