The configuration regulation of single‐atom photocatalysts (SAPCs) can significantly influence the interfacial charge transfer and subsequent catalytic process. The construction of conventional SAPCs for aqueous CO2 reduction is mainly devoted toward favorable activation and photoreduction of CO2, however, the role of water is frequently neglected. In this work, single Ni atoms are successfully anchored by boron‐oxo species on g‐C3N4 nanosheets through a facile ion‐exchange method. The dative interaction between the B atom and the sp2 N atom of g‐C3N4 guarantees the high dispersion of boron‐oxo species, where O atoms coordinate with single Ni (II) sites to obtain a unique six‐oxygen‐coordinated configuration. The optimized single‐atom Ni photocatalyst, rivaling Pt‐modified g‐C3N4 nanosheets, provides excellent CO2 reduction rate with CO and CH4 as products. Quasi‐in‐situ X‐ray photoelectron spectra, transient absorption spectra, isotopic labeling, and in situ Fourier transform infrared spectra reveal that as‐fabricated six‐oxygen‐coordinated single Ni (II) sites can effectively capture the photoelectrons of CN along the BO bridges and preferentially activate adsorbed water to produce H atoms to eventually induce a hydrogen‐assisted CO2 reduction. This work diversifies the synthetic strategies for single‐atom catalysts and provides insight on correlation between the single‐atom configuration and reaction pathway.
The porous ultrathin g-C3N4 nanosheets with strong adsorption capacity have been synthesized for the ultrasensitive fluorescence detection of 2,4,6-trinitrophenol in water by the frequently neglected double-logarithmic Stern–Volmer equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.