Data-Free Knowledge Distillation (KD) allows knowledge transfer from a trained neural network (teacher) to a more compact one (student) in the absence of original training data. Existing works use a validation set to monitor the accuracy of the student over real data and report the highest performance throughout the entire process. However, validation data may not be available at distillation time either, making it infeasible to record the student snapshot that achieved the peak accuracy. Therefore, a practical data-free KD method should be robust and ideally provide monotonically increasing student accuracy during distillation. This is challenging because the student experiences knowledge degradation due to the distribution shift of the synthetic data. A straightforward approach to overcome this issue is to store and rehearse the generated samples periodically, which increases the memory footprint and creates privacy concerns. We propose to model the distribution of the previously observed synthetic samples with a generative network. In particular, we design a Variational Autoencoder (VAE) with a training objective that is customized to learn the synthetic data representations optimally. The student is rehearsed by the generative pseudo replay technique, with samples produced by the VAE. Hence knowledge degradation can be prevented without storing any samples. Experiments on image classification benchmarks show that our method optimizes the expected value of the distilled model accuracy while eliminating the large memory overhead incurred by the sample-storing methods.
With the increasing popularity of deep learning on edge devices, compressing large neural networks to meet the hardware requirements of resource-constrained devices became a significant research direction. Numerous compression methodologies are currently being used to reduce the memory sizes and energy consumption of neural networks. Knowledge distillation (KD) is among such methodologies and it functions by using data samples to transfer the knowledge captured by a large model (teacher) to a smaller one (student). However, due to various reasons, the original training data might not be accessible at the compression stage. Therefore, data-free model compression is an ongoing research problem that has been addressed by various works. In this paper, we point out that catastrophic forgetting is a problem that can potentially be observed in existing data-free distillation methods. Moreover, the sample generation strategies in some of these methods could result in a mismatch between the synthetic and real data distributions. To prevent such problems, we propose a data-free KD framework that maintains a dynamic collection of generated samples over time. Additionally, we add the constraint of matching the real data distribution in sample generation strategies that target maximum information gain. Our experiments demonstrate that we can improve the accuracy of the student models obtained via KD when compared with state-of-the-art approaches on the SVHN, Fashion MNIST and CIFAR100 datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.