Modern data centers provide multiple parallel paths for end-to-end communications. Recent studies have been done on how to allocate rational paths for data flows to increase the throughput of data center networks. A centralized load balancing algorithm can improve the rationality of the path selection by using path bandwidth information. However, to ensure the accuracy of the information, current centralized load balancing algorithms monitor all the link bandwidth information in the path to determine the path bandwidth. Due to the excessive link bandwidth information monitored by the controller, however, much time is consumed, which is unacceptable for modern data centers. This paper proposes an algorithm called hidden Markov Model-based Load Balancing (HMMLB). HMMLB utilizes the hidden Markov Model (HMM) to select paths for data flows with fewer monitored links, less time cost, and approximate the same network throughput rate as a traditional centralized load balancing algorithm. To generate HMMLB, this research first turns the problem of path selection into an HMM problem. Secondly, deploying traditional centralized load balancing algorithms in the data center topology to collect training data. Finally, training the HMM with the collected data. Through simulation experiments, this paper verifies HMMLB’s effectiveness.
Summary
Parallel transmission in multiple access networks using MultiPath TCP (MPTCP) greatly enhances the throughput. However, critical packet disorder is commonly observed due to traffic fluctuation and path diversity. Although several predictive scheduling algorithms have been proposed to solve this problem, they cannot accommodate prediction accuracy and real‐time adaptation simultaneously in a dynamic network environment. The time overhead in modifying scheduling parameters to adapt to network changes leads to performance degradation in throughput and packet disorder. In this study, we propose a scheduling algorithm called Utilising Reinforcement Learning to Schedule Subflows in MPTCP (URLM). We apply reinforcement learning to select an optimal scheduling parameter in real time, which brings significant time benefits for modifying the parameters. The simulation comparison experiments show that URLM reduces the average number of out‐of‐order packets and the time overhead in adapting to network changes while improving global throughput.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.