Glioma is one of the most refractory types of brain tumor. Accurate tumor boundary identification and complete resection of the tumor are essential for glioma removal during brain surgery. We present a method based on visible resonance Raman (VRR) spectroscopy to identify glioma margins and grades. A set of diagnostic spectral biomarkers features are presented based on tissue composition changes revealed by VRR. The Raman spectra include molecular vibrational fingerprints of carotenoids, tryptophan, amide I/II/III, proteins, and lipids. These basic in situ spectral biomarkers are used to identify the tissue from the interface between brain cancer and normal tissue and to evaluate glioma grades. The VRR spectra are also analyzed using principal component analysis for dimension reduction and feature detection and support vector machine for classification. The cross-validated sensitivity, specificity, and accuracy are found to be 100%, 96.3%, and 99.6% to distinguish glioma tissues from normal brain tissues, respectively. The area under the receiver operating characteristic curve for the classification is about 1.0. The accuracies to distinguish normal, low grade (grades I and II), and high grade (grades III and IV) gliomas are found to be 96.3%, 53.7%, and 84.1% for the three groups, respectively, along with a total accuracy of 75.1%. A set of criteria for differentiating normal human brain tissues from normal control tissues is proposed and used to identify brain cancer margins, yielding a diagnostic sensitivity of 100% and specificity of 71%. Our study demonstrates the potential of VRR as a label-free optical molecular histopathology method used for in situ boundary line judgment for brain surgery in the margins.
Triple‐negative breast cancer (TNBC) is an aggressive subset of breast cancer that is more common in African‐American and Hispanic women. Early detection followed by intensive treatment is critical to improving poor survival rates. The current standard to diagnose TNBC from histopathology of biopsy samples is invasive and time‐consuming. Imaging methods such as mammography and magnetic resonance (MR) imaging, while covering the entire breast, lack the spatial resolution and specificity to capture the molecular features that identify TNBC. Two nonlinear optical modalities of second harmonic generation (SHG) imaging of collagen, and resonance Raman spectroscopy (RRS) potentially offer novel rapid, label‐free detection of molecular and morphological features that characterize cancerous breast tissue at subcellular resolution. In this study, we first applied MR methods to measure the whole‐tumor characteristics of metastatic TNBC (4T1) and nonmetastatic estrogen receptor positive breast cancer (67NR) models, including tumor lactate concentration and vascularity. Subsequently, we employed for the first time in vivo SHG imaging of collagen and ex vivo RRS of biomolecules to detect different microenvironmental features of these two tumor models. We achieved high sensitivity and accuracy for discrimination between these two cancer types by quantitative morphometric analysis and nonnegative matrix factorization along with support vector machine. Our study proposes a new method to combine SHG and RRS together as a promising novel photonic and optical method for early detection of TNBC.
- To the best of our knowledge, this is the first demonstration of MPM to distinguish chRCC from oncocytoma in fixed tissues. Our study was limited by small sample size and only a few variants of oncocytic tumors. Prospective studies are warranted to assess the utility of MPM as a diagnostic aid in oncocytic renal tumors.
The accurate identification of the human brain tumor boundary and the complete resection of the tumor are two essential factors for the removal of the glioma tumor in brain surgery. We present a visible resonance Raman (VRR) spectroscopy technique for differentiating the brain tumor margin and glioma grading. Eighty-seven VRR spectra from twenty-one human brain specimens of four types of brain tissues, including the control, glioma grade II, III, and IV tissues, were observed. This study focuses on observing the characteristics of new biomarkers and their changes in the four types of brain tissue. We found that two new RR peaks at 1129 cm−1 and 1338 cm−1 associated with molecular vibrational bonds in four types of brain tissues are significantly different in peak intensities of VRR spectra. These two resonance enhanced peaks may arise from lactic acid/phosphatidic acid and adenosine triphosphate (ATP)/nicotinamide adenine dinucleotide, respectively. We found that lactic acid and ATP concentrations vary with glioma gratings. The higher the grade of malignancy, the more the increase in lactic acid and ATP concentrations. These two RR peaks may be considered as new molecular biomarkers and used to evaluate glioma grades and identify the margin of gliomas from the control tissues. The metabolic process of lactic acid and ATP in glioma cells based on the VRR spectral changes may reveal the Warburg hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.