Due to the advantages of narrow energy distribution of plasmonic hot-electrons in Ag and the high density of states in the TiO2 conduction band, an Ag/TiO2 composite is considered to be an ideal combination to construct a plasmonic hot-electron photodetector with high detectivity and a high response speed. In this work, we fabricate a porous Ag/TiO2-Schottky-diode based plasmonic hot-electron photodetector. This detector shows a high detectivity of 9.8 × 1010 cmHz1/2/W and a fast response speed, with a rise and fall time of 112 μs and 24 μs, respectively, under 450 nm light illumination at zero bias voltage. In addition, the height of the Ag/TiO2 Schottky barrier can be decreased by removing the chemisorbed oxygen from the surface of TiO2 with ultraviolet light illumination, and as a result, the responsivity of the Ag/TiO2 plasmonic hot-electron photodetector at 450 nm can increase from 3.4 mA/W to 7.4 mA/W.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.