Paclitaxel (PTX) is an effective drug against diseases such as lung cancer, ovarian cancer, and breast cancer. However, multidrug resistance limits the clinical applications of this drug. Tetrahedral DNA nanostructures (TDNs) offer great promise as a drug delivery candidate. In our study, we prepared TDNs that were subsequently loaded with PTX (PTX/TDNs). The cytotoxicity of PTX/TDNs and PTX alone on non-small cell lung cancer (NSCLC) cells (A549) and the PTX-resistant cell line (A549/T) was determined using a cell count kit-8 (CCK-8) assay. PTX/TDNs exerted strong lethality on both cell lines. Moreover, drug resistance was overcome. Furthermore, the mechanisms used by PTX/TDNs to overcome drug resistance were studied. The expression of mdr 1 gene and P-glycoprotein (P-gp) in A549/T was found to be downregulated, thus indicating that TDNs serve as a P-gp inhibitor. We also showed that PTX/TDNs killed cancer cells via apoptosis. Thus, PTX/TDNs have great potential for use as a nanodelivery system for the treatment of PTX-resistant NSCLC.
Triple-negative breast cancer (TNBC), an aggressive subtype of breast cancer with higher rates of early relapse and metastasis, is frequently associated with aberrant activation of epithelial-mesenchymal transition (EMT). Nonetheless, how EMT is initiated and regulated during TNBC progression is not well understood. Here, we report that NUMB is a negative regulator of EMT in both human mammary epithelial cells and breast cancer cells. Reduced NUMB expression was significantly associated with elevated EMT in TNBC. Conversely, overexpression of NUMB strongly attenuated the EMT program and metastasis of TNBC cell lines. Interestingly, we showed that NUMB employs different molecular mechanisms to regulate EMT. In normal mammary epithelial cells and breast cancer cells expressing wild-type p53, NUMB suppressed EMT by stabilizing p53. However, in TNBC cells, loss of NUMB facilitated the EMT program by activating Notch signaling. Consistent with these findings, low NUMB expression and high Notch activity were significantly correlated with the TNBC subtype in patients. Collectively, these findings reveal novel molecular mechanisms of NUMB in the regulation of breast tumor EMT, especially in TNBC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.