Altered lipid metabolism and aberrant protein translation are strongly associated with cancerous outgrowth; however, the inter-regulation of these key processes is still underexplored in diffuse large B-cell lymphoma (DLBCL). Although fatty acid synthase (FASN) activity is reported to positively correlate with PI3K-Akt-mTOR pathway that can modulate protein synthesis, the precise impact of FASN inhibition on this process is still unknown. Herein, we demonstrate that attenuating FASN expression or its activity significantly reduces eIF4B (eukaryotic initiation factor 4B) levels and consequently overall protein translation. Through biochemical studies, we identified eIF4B as a bonafide substrate of USP11, which stabilizes and enhances eIF4B activity. Employing both pharmacological and genetic approaches, we establish that FASN-induced PI3K-S6Kinase signaling phosphorylates USP11 enhancing its interaction with eIF4B and thereby promoting oncogenic translation.
Published molecular profiling studies in patients with lymphoma suggested the influence of hypoxia inducible factor-1 alpha (HIF1α) targets in prognosis of DLBCL. Yet, the role of hypoxia in hematological malignancies remains unclear. We observed that activation of HIF1α resulted in global translation repression during hypoxic stress in DLBCL. Protein translation efficiency as measured using 35S-labeled methionine incorporation revealed a ≥50% reduction in translation upon activation of HIF1α. Importantly, translation was not completely inhibited and expression of clinically correlated hypoxia targets such as GLUT1, HK2, and CYT-C was found to be refractory to translational repression under hypoxia in DLBCL cells. Notably, hypoxic induction of these genes was not observed in normal primary B-cells. Translational repression was coupled with a decrease in mitochondrial function. Screening of primary DLBCL patient samples revealed that expression of HK2, which encodes for the enzyme hexokinase 2, was significantly correlated with DLBCL phenotype. Genetic knockdown studies demonstrated that HK2 is required for promoting growth of DLBCL under hypoxic stress. Altogether, our findings provide strong support for the direct contribution of HK2 in B-cell lymphoma development and suggest that HK2 is a key metabolic driver of the DLBCL phenotype.
Expression patterns from the target genes provide insights into behavioral and physiological responses to permethrin and suggest a new avenue of research on the role of chemosensation genes in insect adaptation to toxins.
Complex karyotype acute myeloid leukemia (CK-AML) has a dismal outcome with current treatments, underscoring the need for new therapies. Here, we report synergistic anti-leukemic activity of the BCL-2 inhibitor venetoclax (Ven) and the asparaginase formulation Pegylated Crisantaspase (PegC) in CK-AML in vitro and in vivo. Ven-PegC combination inhibited growth of multiple AML cell lines and patient-derived primary CK-AML cells in vitro. In vivo, Ven-PegC showed potent reduction of leukemia burden and improved survival, compared with each agent alone, in a primary patient-derived CK-AML xenograft. Superiority of Ven-PegC, compared to single drugs, and, importantly, the clinically utilized Ven-azacitidine combination, was also demonstrated in vivo in CK-AML. We hypothesized that PegC-mediated plasma glutamine depletion inhibits 4EBP1 phosphorylation, decreases the expression of proteins such as MCL-1, whose translation is cap dependent, synergizing with the BCL-2 inhibitor Ven. Ven-PegC treatment decreased cellular MCL-1 protein levels in vitro by enhancing eIF4E-4EBP1 interaction on the cap-binding complex via glutamine depletion. In vivo, Ven-PegC treatment completely depleted plasma glutamine and asparagine and inhibited mRNA translation and cellular protein synthesis. Since this novel mechanistically-rationalized regimen combines two drugs already in use in acute leukemia treatment, we plan a clinical trial of the Ven-PegC combination in relapsed/refractory CK-AML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.